
From <https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-
77ace6fb60ef> :

Introduction to Knowledge Graph
Embeddings

Learn about Knowledge Graphs embeddings and two popular
models to generate them with DGL-KE
Author: Cyrus Vahid, Da Zheng, George Karypis and Balaji Kamakoti: AWS AI

Jun 15, 2020

Knowledge Graphs (KGs) have emerged as an effective way to integrate disparate data sources and
model underlying relationships for applications such as search. At Amazon, we use KGs to
represent the hierarchical relationships among products; the relationships between creators and
content on Amazon Music and Prime Video; and information for Alexa’s question-answering
service. Information extracted from KGs in the form of embeddings is used to improve search,
recommend products, and infer missing information. It is however hard to train KG embeddings
from graphs with millions of nodes and billions of edges.

Amazon recently launched DGL-KE, a software package that simplifies this process with simple
command-line scripts. With DGL-KE, users can generate embeddings for very large graphs 2–5x
faster than competing techniques. DGL-KE provides users the flexibility to select models used to
generate embeddings and optimize performance by configuring hardware, data sampling
parameters, and the loss function. To use this package effectively, however, it is important to
understand how embeddings work and the optimizations available to compute them. This two-part
blog series is designed to provide this information and get you ready to start taking advantage of
DGL-KE.

What is a graph
A graph is a structure used to represent things and their relations. It is made of two sets — the set of
nodes (also called vertices) and the set of edges (also called arcs). Each edge itself connects a pair
of nodes indicating that there is a relation between them. This relation can either be undirected, e.g.,
capturing symmetric relations between nodes, or directed, capturing asymmetric relations. For
example, if a graph is used to model the friendship relations of people in a social network, then the
edges will be undirected as they are used to indicate that two people are friends; however, if the
graph is used to model how people follow each other on Twitter, the edges will be directed.
Depending on the edges’ directionality, a graph can be directed or undirected.

Graphs can be either homogeneous or heterogeneous. In a homogeneous graph, all the nodes
represent instances of the same type and all the edges represent relations of the same type. For
instance, a social network is a graph consisting of people and their connections, all representing the
same entity type. In contrast, in a heterogeneous graph, the nodes and edges can be of different

https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef
https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef
https://github.com/awslabs/dgl-ke
https://github.com/awslabs/dgl-ke
https://www.amazon.science/blog/combining-knowledge-graphs-quickly-and-accurately

types. For instance, the graph for encoding the information in a marketplace will have buyer, seller,
and product nodes that are connected via wants-to-buy, has-bought, is-customer-of, and is-selling
edges.

Finally, another class of graphs that is especially important for knowledge graphs are multigraphs.
These are graphs that can have multiple (directed) edges between the same pair of nodes and can
also contain loops. These multiple edges are typically of different types and as such most
multigraphs are heterogeneous. Note that graphs that do not allow these multiple edges and self-
loops are called simple graphs.

What is a knowledge graph
In the earlier marketplace graph example, the labels assigned to the different node types (buyer,
seller, product) and the different relation types (wants-to-buy, has-bought, is-customer-of, is-selling)
convey precise information (often called semantics) about what the nodes and relations represent
for that particular domain. Once this graph is populated, it will encode the knowledge that we have
about that marketplace as it relates to types of nodes and relations included. Such a graph is an
example of a knowledge graph.

A knowledge graph (KG) is a directed heterogeneous multigraph whose node and relation types
have domain-specific semantics. KGs allow us to encode the knowledge into a form that is human
interpretable and amenable to automated analysis and inference. KGs are becoming a popular
approach to represent diverse types of information in the form of different types of entities
connected via different types of relations.

When working with KGs, we adopt a different terminology than the traditional vertices and edges
used in graphs. The vertices of the knowledge graph are often called entities and the directed edges
are often called triplets and are represented as a (h, r, t) tuple, where h is the head entity, t is the tail
entity, and r is the relation associating the head with the tail entities. Note that the term relation here
refers to the type of the relation (e.g., one of wants-to-buy, has-bought, is-customer-of, and is-
selling).

Let’s now examine a KG with cast of a people and the world in which they live.

Scenario:
Mary and Tom are siblings and they both are vegetarians, who like potatoes and cheese. Mary and
Tom both work at Amazon. Joe is a bloke who is a colleague of Tom. To make matters
complicated, Joe loves Mary, but we do not know if the feeling is reciprocated.

Joe is from Quebec and is proud of his native dish of Poutine, which is composed of potato,
cheese, and gravy. We also know that gravy contains meat in some form.

Joe is excited to invite Tom for dinner and has sneakily included his sibling, Mary, in the invitation.
His plans are doomed from the get-go as he is planning to serve the vegetarian siblings his favorite
Quebecois dish, Poutine.

Oh! by the way, a piece of geography trivia: Quebec is located in a province of the same name
which in turn is located in Canada.

There are several relationships in this scenario that are not explicitly mentioned but we can simply
infer from what we are given:

• Mary is a colleague of Tom.
• Tom is a colleague of Mary.
• Mary is Tom’s sister.
• Tom is Mary’s brother.
• Poutine has meat.
• Poutine is not a vegetarian dish.
• Mary and Tom would not eat Poutine.
• Poutine is a Canadian dish.
• Joe is Canadian.
• Amazon is a workplace for Mary, Tom, and Joe.

Some interesting negative conclusions seem intuitive to us, but not to the machine:

• Potato does not like Mary.
• Canada is not from Joe.
• Canada is not located in Quebec.
• …

What we have examined is a knowledge graph, a set of nodes with different types of
relations:

• 1-to-1: Mary is a sibling of Tom.
• 1-to-N: Amazon is a workplace for Mary, Tom, and Joe.
• N-to-1: Joe, Tom, and Mary work at Amazon.
• N-to-N: Joe, Mary, and Tom are colleagues.

There are other categorization perspectives on the relationships as well:

• Symmetric: Joe is a colleague of Tom entails Tom is also a colleague of Joe.
• Antisymmetric: Quebec is located in Canada entails that Canada cannot be located in

Quebec.

Figure 1 visualizes a KG that describes the World of Mary. For more information on how to use the
examples, please refer to the code embedded.

https://github.com/cyrusmvahid/GNNTrainingMaterial/tree/master/supporting_examples

Knowledge graph embeddings
Knowledge graph embeddings (KGEs) are low-dimensional representations of the entities and
relations in a knowledge graph. They provide a generalizable context about the overall KG that can
be used to infer relations. In the World of Mary visualized above, embeddings provide insights
about relations among Mary, Joe, and Tom. In a larger and more dense KG, embeddings could
provide insights about molecular property interactions to accelerate drug discovery or cluster user
behaviors of scammers in a gaming network.

The knowledge graph embeddings are computed so that they satisfy certain properties; i.e., they
follow a given KGE model. These KGE models define different score functions that measure the
distance of two entities relative to its relation type in the low-dimensional embedding space. These
score functions are used to train the KGE models so that the entities connected by relations are
close to each other while the entities that are not connected are far away.

There are many popular KGE models such as TransE, TransR, RESCAL, DistMult, ComplEx, and
RotatE, which define different score functions to learn entity and relation embeddings. DGL-KE
makes these implementations accessible with a simple input argument in the command line script.
In this post, we introduce and compare TransE and TransR, two common methods to provide

https://arxiv.org/pdf/1902.10197.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://arxiv.org/abs/1412.6575
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2015&rep=rep1&type=pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9571
https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf

readers some intuition about the models and the tradeoffs

TransE
Translation based embedding model (TransE) is a representative translational distance model that
represents entities and relations as vectors in the same semantic space of dimension Rd, where d is
the dimension of the target space with reduced dimension. A fact in the source space is represented
as a triplet (h,r,t) where h is short for the head, r is for the relation, and t is for the tail. The
relationship is interpreted as a translation vector so that the embedded entities are connected by
relation r have a short distance. [3, 4]

In terms of vector computation, it could mean adding a head to a relation should approximate to the
relation’s tail or h+r ≈ t.

TransE performs linear transformation and the scoring function is negative distance between:

TransR

TransE cannot cover a relationship that is not 1-to-1 as it learns only one aspect of similarity.
TransR addresses this issue with separating relationship space from entity space where h, t ᵏ and∈ ℝ
$r ᵈ. The semantic spaces do not need to be of the same dimension. In the multi-relationship ∈ ℝ
modeling, we learn a projection matrix M ᵏˣᵈ for each relationship that can project an entity to ∈ℝ
different relationship semantic spaces. Each of these spaces captures a different aspect of an entity
that is related to a distinct relationship. In this case, a head node, h, and tail node, t with a
relationship r are projected into the relationship space using the learned projection matrix Mᵣ as
hᵣ=hMᵣ and tᵣ=tM ᵣrespectively. Figure 4 illustrates this projection.

https://arxiv.org/pdf/1806.01973.pdf

Let us explore this using an example. Mary and Tom are siblings and colleagues. They both are
vegetarians. Joe also works for Amazon and is a colleague of Mary and Tom. TransE might end up
learning very similar embeddings for Mary, Tom, and Joe because they are colleagues but cannot
recognize the (not) sibling relationship. Using TransR, we learn projection matrices: M_sibling,
M_colleague, and M_vegetarian that perform better at learning relationship like (not)sibling.

The score function in TransR is similar to the one used in TransE and measures the euclidean
distance between h+r and t, but the distance measure is per relationship space. More formally:

Another advantage of TransR over TransE is its ability to extract compositional rules. The ability to
extract rules has two major benefits. It offers richer information and has a smaller memory space as
we can infer some rules from others.

Tradeoffs
The benefits from more expressive projections in TransR adds to the complexity of the model and a
higher rate of data transfer, which has adversely affected distributed training. TransE requires O(d)
parameters per relation, where dd is the dimension of semantic space in TransE and includes both
entities and relationships. As TransR projects entities to a relationship space of dimension kk, it will
require O(kd) parameters per relation. Depending on the size of k, this could potentially increase the
number of parameters drastically. In exploring DGL-KE, we will examine the benefits of DGL-KE
in making computation of knowledge embedding significantly more efficient. [5], [7]

For a detailed overview of other implementations in DGL-KE, please check out our documentation.

What’s Next?
In this blog post, we introduced the concept of Knowledge Graph embeddings (KGEs), how they
work and two popular methods to generate KGEs. In our next post, we will explore how options
available to accelerate training with DGL-KE.

https://github.com/awslabs/dgl-ke
https://towardsdatascience.com/optimize-knowledge-graph-embeddings-with-dgl-ke-1fff4ab275f2?source=email-ad11aea5ba40-1592228879945-layerCake.autoLayerCakeWriterNotification-------------------------c241be34_5fc5_43b9_a2f1_4c0d47b32e26&sk=c5e477feb73aba2119c44ea54d91bf47
https://github.com/awslabs/dgl-ke
https://github.com/awslabs/dgl-ke

References
1. http://semantic-web-journal.net/system/files/swj1167.pdf
2. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph

embedding by relational rotation in complex space. CoRR, abs/1902.10197, 2019.
3. Knowledge Graph Embedding: A Survey of Approaches and Applications Quan Wang,

Zhendong Mao, Bin Wang, and Li Guo. DOI 10.1109/TKDE.2017.2754499, IEEE
Transactions on Knowledge and Data Engineering

4. transE: Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, JasonWeston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in
Neural Information Processing Systems 26. 2013.
5.TransR: Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity
and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

5. RESCAL: Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11, 2011.

6. Survey paper: Q. Wang, Z. Mao, B. Wang and L. Guo, “Knowledge Graph Embedding: A
Survey of Approaches and Applications,” in IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 12, pp. 2724–2743, 1 Dec. 2017.

7. DistMult: Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge bases. In
Proceedings of the International Conference on Learning Representations (ICLR)
2015, May 2015.

8. ComplEx: Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. CoRR, abs/1606.06357, 2016.

9. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph
embedding by relational rotation in complex space. CoRR, abs/1902.10197, 2019.

http://semantic-web-journal.net/system/files/swj1167.pdf

	Introduction to Knowledge Graph Embeddings
	Learn about Knowledge Graphs embeddings and two popular models to generate them with DGL-KE

	What is a graph
	What is a knowledge graph
	Knowledge graph embeddings
	What’s Next?
	References

