i Plagiarism and declaration

Plagiarism

It is not accepted to submit papers/ essays/ exams that have previously been submitted for grading or evaluation, either by you or another student. Resubmitting a paper/ essay/ exam will be regarded as plagiarism, and can lead to serious consequences.

Declaration

I hereby declare that the assignment which I am submitting is my own work and that

- it has not been used in another examination or been submitted or published at another educational institution in Norway or abroad
- it does not contain other people's work without this being stated
- it does not contain my own previous work without this being stated
- the bibliography contains all the literature and all the sources that I have used in my assignment, and that all references refer to this bibliography.

I am aware that any violation of these rules will be considered cheating.

All work you submit at the University of Bergen may be sent for an electronic plagiarism check.

i Part 1 -General theory

In this task, you will answer 25 questions.

Scoring: each correct answer usually gives +0.5 points (*).
Suggested time: 30 minutes.
Weight: ca 12.5% of the final grade.
(*) A few questions allow multiple choices. Each correct choice then gives +0.25 and each incorrect choice gives -0.25 . But the score for everything correct is still 0.5 (even if only one choice is correct) and the minimum is 0.0 (so no negative overall score on any question).

1 INFO216-RDFS axioms

Axioms in RDFS

Select one alternative:

Are not a part of the RDFS semantics

Must be defined by the user before executing entailment rules

There are 22 axioms in RDFS

Are built into the semantics of RDFS

Are based on description logic (DL)

Maximum marks: 0.5

2 INFO216 - link prediction

When talking about graph embeddings, link prediction is to:
Select one alternative:Given two nodes, to find all property paths between them.Given a node, to find semantically similar nodes.

Given a node and an edge type, to decide nodes that are candidates to form a plausible triple.

Given two nodes and an edge type, to decide whether they form a plausible triple.
(Here, plausible means "likely to be true".)

Maximum marks: 0.5

3 INFO216 - hasFlightTo property

The hasFlightTo object property between two airports is Select one or more alternatives:TransitiveIrreflexiveAsymmetricInverse functionalReflexiveFunctional

4 INFO216-JSON-LD forms

JSON-LD is

Select one alternative:Logic description for JSONA JSON format for serialising linked dataW3C's JSON Data Loader standardA tractable fragment of JSON logicDescription logic reasoning in JSON

5 INFO216-JSON-LD keywords

Which is NOT a reserved keyword in JSON-LD?

Select one alternative:

@value: signifies that a value is a literal@type: signifies that the JSON object with the @type key has a particular RDF type (or several types)
@context: signifies a JSON object that contains the context (or semantic mapping) for the other objects in the same JSON array
@id: signifies that the JSON object with the @id key is identified by a particular URI
@rule: signifies an entailment rule that applies to the object

Maximum marks: 0.5

6 INFO216-RDFS expressiveness

Which one can be expressed in plain RDFS? Select one alternative:The BirthNumber of a Person is uniqueA FootballTeam has 11 players, a VolleyballTeam only 6A Republic has exactly one PresidentTwo individuals with different URIs are actually differentEvery ancestor of an ancestor is an ancestor tooEveryone who receives medical treatment is a patientA StringQuartet has two violins but only one viola and one celloA class is a negation of another classA class is a union (or intersection) of other classesTwo properties with different URIs are actually the same

Maximum marks: 0.5

7 INFO216-RDFS resource classes

What is true about RDFS resource classes?
Select one alternative:
Provides Information hiding

Resources have the same RDFS class throughout their lifetime

The properties of a resource determines its RDFS class
The properties of a resource are only visible to its neighbours

Classes are templates for instantiating objects

8 INFO216 - why RDFS classes

What is NOT a reason that RDFS has resource classes?
Select one alternative:

Classes are important for defining and using other RDFS concepts
We can describe the class formally using RDFS and OWL DL

Knowing the type (class) of a resource often means we can infer additional information about it (entailment)The type (class) of a resource is an important part of its semanticsRDFS classes restrict which properties RDF resources can have

Maximum marks: 0.5

9 INFO216-RDFS Schema

RDF Schema (RDFS) is NOT

Select one alternative:A small RDF vocabulary for more expressive graphsThe foundation for SKOS, OWL and OWL2Used to query RDF graphs
Used for defining other vocabularies

Maximum marks: 0.5

10 INFO216 - hasLocation property

The isLocatedln object property (between spatial regions) is Select one or more alternatives:AsymmetricIrreflexiveReflexiveSymmetricInverse functionalTransitive

Maximum marks: 0.5

11 INFO216-relation prediction

When talking about graph embeddings, relation prediction is to:
Select one alternative:
Given a node, to find semantically similar nodes.

Given two nodes, to find edge types that are candidates to form a plausible triple.

Given two nodes and an edge type, to decide whether they form a plausible triple.

Given a node, determine whether it plausibly represents a relation or not.
(Here, plausible means "likely to be true".)

Maximum marks: 0.5

12 INFO216-RDF expressiveness

Which of these are supported by the RDF semantics?
Select one alternative:
Legally owning a gun means owning a licensed weapon

The object in a hasWorkHomepage triple is a URL

The subject in a hasLicensePlate triple is a Vehicle

Everything that is used as a predicate in a triple is an rdf:Property

A Motorbike is a Vehicle

Maximum marks: 0.5

13 INFO216-reification

Reification is that

Select one alternative:
A resource represents a material thing or place

A triple is unpacked into four new triples

A URI answers HTTP requests and returns more information about a resource

303 redirection is used to return information about a resource

Maximum marks: 0.5

14 INFO216-RDF lists

It is true about an rdf:List (collection) that Select one alternative:It is typically used to represent alternativesNew members cannot be added without deleting triplesCannot contain the same resource several timesIt is easy to add new members

15 INFO216-RDFS containers

An RDFS container CANNOT

Select one alternative:Be an rdf:ListBe an rdfs:Alt, rdfs:Bag or rdfs:Seq

Be extended without deleting triples
Have duplicate members

Maximum marks: 0.5

16 INFO216-RDF resource types

An RDF resource

Select one alternative:
always has rdfs:Class as its rdf:type
may or may not have an rdf:type
must have exactly one rdf:type
always has at least one rdf:type

Maximum marks: 0.5

17 INFO216 - triple classificaiotn

When talking about graph embeddings, triple classification is to:

Select one alternative:

Given a node, to find semantically similar nodes.

Given two nodes and an edge type, to decide whether they form a plausible triple.

Given two nodes, to find edge types that are candidates to form a plausible triple.

Given a node and an edge type, to find nodes that are candidates to form a plausible triple.
(Here, plausible means "likely to be true".)

Maximum marks: 0.5

18 INFO216-RDF resources can be

An RDF resource can be
Select one alternative:
a property
an information resource
any of these
a material phenomenon (including people and artefacts)
a concept

Maximum marks: 0.5

19
 INFO216 - not a LOD best practice

Which is NOT a best practice for data provisioning in the LOD cloud? Select one alternative:

Make proprietary vocabulary terms dereferencable

Use terms from widely deployed vocabularies

Refer to additional access methods (e.g., SPARQL)

Map proprietary vocabulary terms to other vocabularies

Use URIs that are standardised by the W3C

Provide licensing metadata (e.g., CC)

Provide provenance metadata (e.g., PROV)

Provide dataset-level metadata (e.g., VANN, VS)

Maximum marks: 0.5

20 INFO216 - not a core LOD principle

Which is NOT one of the four core LOD principles?
Select one alternative:

Use URIs that are language-independent.Use URIs that answer to HTTP requests

URIs return information that contain URIs of related resources

Use URIs to identify resources

URIs return information about resources on standard semantic formats

21 INFO216-LOD acronym

LOD is an acronym for
Select one alternative:Lean Open DataLinguistic Online Documents

Linked Open Data

Live Online Data

Maximum marks: 0.5

22 INFO216 - hasSibling property

When we exclude half-siblings, the hasSibling object property between two people is
Select one or more alternatives:Inverse functionalTransitiveAsymmetricFunctionalReflexiveIrreflexiveSymmetric

23 INFO216 - connectedByRoad property (oneway streets)

The isConnectedByRoad object property between two locations (there can be one-way streets) is
Select one or more alternatives:IrreflexiveReflexiveSymmetricInverse functionalTransitiveAsymmetricFunctional

Maximum marks: 0.5

24 INFO216 - hasMother property

The hasBirthMother object property between two persons is Select one or more alternatives:

IrreflexiveSymmetricInverse functionalReflexiveAsymmetricTransitiveFunctional

25 INFO216-hasNeighbour property

The locatedNextTo object property between two locations is Select one or more alternatives:IrreflexiveSymmetricFunctionalTransitiveInverse functionalReflexiveAsymmetric

i Part 2 - Programming

In this task, you will write a program that creates an ontology/knowledge graph, as described in the text and illustrated in the figure.

Description:

Author-s, Country-s and Organization-s are Agent-s, which have name-s that are string-s. An Author can have affiliation (organization he/she works for) and country.

Paper-s are a type of Publication, and they can also be published in other Publication-s (such as books or journals). Publication-s have string title-s. They also have author-s, and they are published in a year that is described by an integer. A Publication can have a publisher, which is an Organization.

Illustration:

26

Part 2a - Ontology programming

Write a program that creates the ontology using either rdflib or owlready2.
(If you use rdflib, SPARQL Updates are ok.)

Use the same example prefix [http://ex.org\#](http://ex.org%5C#) for all domain-specific classes and properties. In addition, you will need basic terms from RDF, RDFS, OWL, etc., which should have the correct prefix.

Scoring:

- you get up to 2 points for overall idea
- you get up to 4 points extra for code that compiles and runs
- you get up to 6 points for getting the ontology contents right

Suggested time: 30 minutes.
Weight: ca 12% of the final grade.

Here is a list of domain-specific classes and properties used, if you want to copy-and-paste:

Classes:	Properties:
:Agent :Author :Organization	:name :affiliation :title :publisher
:Country :Paper :Publication	:publication :author :country :year

Fill in your answer here
\square

Maximum marks: 12

27

Part 2b: Knowledge-graph programming

Write a program that adds the following individuals and relations to the ontology/knowledge graph you just created. (When there are several triples of the same type, it is not critical that you add all of them.)

Use the same example prefix [http://ex.org\#](http://ex.org%5C#) for all domain-specific classes, properties, and individuals. In addition, you will need basic terms from RDF, RDFS, OWL, etc., which should have the correct prefix.

Title	Authors	Publication	Publisher	Year
:The_semantic_web	:Tim_BernersLee, :James_Hendler	:Scientific_American	:Springer_Nature2001	
Bpedia_A_nucle	:Soren_Auer, :Christian Bizer	:The_semantic_web_book:Springer_Nature2007		
:Linked_data	:Christian_Bizer,	,:Semantic_services_	:IGI_Global	2011
The_story_so_far	:Tim_BernersLee	interoperability_and web applications		

Author	Affiliation	Country
:Tim_Berners-	:Massachusetts_Institute_of_Technology:United_States	
Lee		
:Soren_Auer	:Leibniz_University_Hannover	:Germany
:Christian_Bizer :University_of_Mannheim	:Germany	
:James_Hendler:Rensselaer_Polytechnic_Institute	:United_States	

Scoring: you get up to 4 points for correct triples.
Suggested time: 15 minutes.
Weight: ca 4% of the final grade.

Note - in the table above, these URLs were split over two lines, but they are only two, not four resources:

- :Linked_data_The_story_so_far
- :Semantic_services_interoperability_and_web_applications

Fill in your answer here
\square

Maximum marks: 4

i Part 3 - Standard terms

The classes and properties in the description and illustration in part 2 lack prefixes. But many similar classes and properties are already defined (exactly or closely matching) in standard vocabularies and ontologies.

Which of these 12 standard terms do you think are best?

Scoring: you get 0.8 points for each correct prefix or name.
Suggested time: 15 minutes.
Weight: ca 10% of the final grade.

28 INFO216-Terms 1

For Agent I would use:

Select one alternative:

dc:Agentsioc:Agentfoaf:Agent(In this part, you can assume that 'dc:' is either 'dce:' or 'dcterms:'.)
Maximum marks: 0.8

29 INFO216-Terms 2

For type I would use:
Select one alternative:
owl:type
rdf:type
dc:type

Maximum marks: 0.8

30 INFO216-Terms 3

For NamedClass I would use:

Select one alternative:

rdfs:NamedClassowl:NamedClass
dbpedia-owl:NamedClass

Maximum marks: 0.8

${ }^{31}$ INFO216 - Terms 4

For subClassOf I would use:

Select one alternative:

rdf:subClassOf
rdfs:subClassOf
owl:subClassOf

Maximum marks: 0.8

32 INFO216-Terms 5

For Organization I would use:

Select one alternative:

foaf:Organization
dc:Organization
sioc:Organizarion

Maximum marks: 0.8

${ }^{33}$ INFO216-Terms 6

For name I would use:

Select one alternative:
skos:name
rdfs:name
foaf:name

Maximum marks: 0.8

34 INFO216-Terms 7

For string I would use:

Select one alternative:

xsd:string
rdf:string
schema:string

Maximum marks: 0.8

${ }^{35}$ INFO216-Terms 8

For affiliation I would use:

Select one alternative:

rdfs:affiliation
dc:affiliation
schema:affiliation

Maximum marks: 0.8

36 INFO216-Terms 9

For title I would use:
Select one alternative:
dc:title
skos:title
foaf:title

Maximum marks: 0.8

37 INFO216-Terms 10

For publisher I would use:
Select one alternative:
bibo:publisher
foaf:publisher
dc:publisher

Maximum marks: 0.8

38 INFO216-Terms 11

For publication (i.e., that a Paper is published in another Publication I would use:

Select one alternative:dc:isPartOfbibo:inCollection
foaf:publication

Maximum marks: 0.8

39 INFO216-Terms 12

For author I would use:

Select one alternative:
foaf:authordc:contributor
rdfs:author

Maximum marks: 0.8

i Part 4-Restrictions and reasoning

Part 4 has two sub-parts.

First you will write restrictions in RDFS, and then in OWL.

Suggested time for both sub-parts: 40 minutes.
Weight: ca 16% of the final grade.

i Part 4a-Simple restrictions in RDFS/OWL

Write the following 10 statements as RDFS/OWL triples in Turtle.
Continue to use the same example prefix as in Part 2: [http://ex.org\#](http://ex.org%5C#) for all domain-specific classes and properties, along with the basic terms from RDF, RDFS, OWL, etc.

You do not have to write the prefix definitions yourself. You can assume that the prefixes ':', 'rdf:', 'rdfs:', 'owl:', etc. are already defined.

Scoring: you get 0.8 points for each statement.
Suggested time: 20 minutes.
Weight: ca 8% of the final grade.

40
 INFO216 - Simple restrictions 1

An Organization is a kind of Agent.

Fill in your answer here
\square

Maximum marks: 0.8

41 INFO216-Simple restrictions 2

The object in an affiliation-triple is an Organization.

Fill in your answer here
\square

Maximum marks: 0.8

42 INFO216 - Simple restrictions 3

The subject in an affiliation-triple is an Author.

Fill in your answer here
\square

Maximum marks: 0.8

43 INFO216 - Simple restrictions 4

A Paper is published in only one Publication.

Fill in your answer here
\square

Maximum marks: 0.8

44 INFO216-Simple restrictions 5

A Paper cannot have more than one publication year.

Fill in your answer here
\square

Maximum marks: 0.8

45 INFO216-Simple restrictions 6

A Paper cannot be its own publication.

Fill in your answer here
\square

Maximum marks: 0.8

46
 INFO216 - Simple restrictions 7

publication is a transitive relation.

Fill in your answer here
\square

Maximum marks: 0.8

47 INFO216-Simple restrictions 8

Different Author-s have different name-s.

Fill in your answer here
\square

Maximum marks: 0.8

48 INFO216 - Simple restrictions 9

An Author is not an Organization.

Fill in your answer here
\square

Maximum marks: 0.8

49
 INFO216 - Simple restrictions 10

A Publication title is a string.
Fill in your answer here
\square

Maximum marks: 0.8

i Part 4b - Complex restrictions in OWL/RDFS

Write the following 5 statements as OWL/RDFS expressions in Turtle.

Continue to use the same example prefix as in Part 2: [http://ex.org\#](http://ex.org%5C#) for all domain-specific classes and properties, along with basic terms from RDF, RDFS, OWL, etc.

You do not have to write the prefix definitions yourself. You can assume that the prefixes ':', 'rdf:', 'rdfs:', 'owl:', etc. are already defined.

Scoring: you get 1.6 points for each statement.
Suggested time: 20 minutes.
Weight: ca 8% of the final grade.

50 INFO16-Complex restrictions 1

A Paper must have at least one author.

Fill in your answer here
\square

Maximum marks: 1.6

51 INFO216-Complex restrictions 2

A Paper has exactly one title.

Fill in your answer here
\square

Maximum marks: 1.6

52 INFO216-Complex expressions 3

A year must be in range from $\underline{1900}$ to $\underline{2050}$ (inclusive).

Fill in your answer here
\square

Maximum marks: 1.6

53 INFO216 - Complex expressions 4

Author-s, Organization-s, and Country-s are disjoint.

Fill in your answer here
\square

Maximum marks: 1.6

54 INFO216-Complex expressions 5

A Publisher must be either of ACM, IEEE CS, Springer Nature, or IGI Global.

Fill in your answer here
\square

Maximum marks: 1.6

i Part 5 - Reasoning

In this part, we will run reasoning over the classes, properties, and individuals from Part 2, with the restrictions from Part 4 added. Then you will be asked about the results of reasoning.

Continue to use the same example prefix as in Part 2: [http://ex.org\#](http://ex.org%5C#) for all domain-specific classes and properties, along with basic terms from RDF, RDFS, OWL, etc.

Assume we have run RDFS_OWLRL_Semantics to execute RDFS entailments.

Scoring: you get 1.5 points for each correct choice.
Suggested time: 30 minutes.
Weight: ca 13.5% of the final grade.

55 INFO216-Reasoning 1

After running entailments, it is true that:
Christian Bizer has country Germany,

Select one alternative:

Correct

Incorrect

56 INFO216-Reasoning 2

After running entailments, it is true that:
University of Mannheim has country Germany,

Select one alternative:

Incorrect

Correct

Maximum marks: 1.5

57 INFO216-Reasoning 3

After running entailments, it is true that:
The semantic web has type Paper,

Select one alternative:

Correct

Incorrect

Maximum marks: 1.5

58 INFO216-Reasoning 4

After running entailments, it is true that:
The semantic web has type Publication,

Select one alternative:
Incorrect

Correct

Maximum marks: 1.5

59 INFO216-Reasoning 5

After running entailments, it is true that:
The semantic web book has type Paper,

Select one alternative:

Correct

Incorrect

Maximum marks: 1.5

60 INFO216-Reasoning 6
After running entailments, it is true that:
The semantic web book has type Publication,

Select one alternative:

Incorrect

Correct

61 INFO216-Reasoning 7

Assume the following statement has been added as a triple:
The semantic web is published in The semantic web book.

Which of the following statements are now true?

Select one or more alternatives:

\square Christian_Bizer is now the OWL-same author as Time_Berners-Lee.

The_semantic_web paper is now OWL-same as the
DBpedia_A_nucleus paper.RDFS-OWLRL reasoning halts due to an exception..RDFS-OWLRL reasoning goes through with no errors or warnings.

The Scientific_American publication is now OWL-same as
The_semantic_web_book.

RDFS-OWLRL reasoning goes through, but it reports reasoning errors.
(Because you can choose multiple alternatives, each correct answer gives 1.5 and each incorrect one gives -1.5 , but you cannot score negative on the task as a whole.)

Maximum marks: 4.5

i Part 6 -SPARQL

In this part you will write 16 SPARQL queries and updates to the ontology and instances from Part 2.

Assume we have run an RDFS-OWLRL reasoner as in Part 5. Also assume the KG is complete so we can query with negation and cardinality restrictions.

Use the same names of classes, properties, individuals, and prefixes as before. You will only write the SPARQL query or update itself, not any of the program code needed to execute it.

You do not have to write the prefix definitions yourself. You can assume that the prefixes ':', 'rdf:', 'rdfs:', 'owl:', etc. are already defined.

Scoring: 1.0 point per correct query/update
Suggested time: 40 minutes.
Weight: 16% of the final grade.

62 INFO216 - SPARQL query 1

List all Paper title-s. (Example output below.)
Fill in your answer here
\square
Example output:
title
"DBpedia A nucleus"
"Linked data The story so far"
"The semantic web"

Maximum marks: 1

${ }^{63}$ INFO216-SPARQL query 2

List all publisher Organization-s in alphabetical order.

Fill in your answer here
\square

Example output:
name

[^0]Maximum marks: 1

64 INFO216-SPARQL query 3

List all Author-s along with the title-s of the Paper-s they have written.

Fill in your answer here
\square

Example output:
author | title
"Christian Bizer"|"DBpedia A nucleus"
"Christian Bizer"|"Linked data The story so far"
"James Hendler" |"The semantic web"
"Jens Lehmann" |"DBpedia A nucleus"
"Ora Lassila" |"The semantic web"
"Soren Auer" |"DBpedia A nucleus"
"Tim Berners-Lee"|"Linked data The story so far"
"Tim Berners-Lee"|"The semantic web"
"Tom Heath" |"Linked data The story so far"

65 INFO216-SPARQL query 4

List all Country-s and numbers of Paper-s from that Country.

Fill in your answer here
\square

Example output:
country | number
"Germany" |"3"^^<...>
"United States"|"3"^^<...>

Maximum marks: 1

66 INFO216-SPARQL queries 5

List all Author-s of more than one Paper in descending order (of paper numbers).

Fill in your answer here
\square

Example output.
author | number
"Christian Bizer"|"2"^^<...>
"Tim Berners-Lee"|"2"^^<...>

67 INFO216 - SPARQL queries 6

For each Author, write the first and last year they have published a Paper.

Fill in your answer here
\square

Example output:
name | min | max

[^1]
68 INFO216-SPARQL queries 7

List all Authors that are not affiliated with an Organization in Germany.

Fill in your answer here
\square
Example output:
name

[^2]Maximum marks: 1

69 INFO216-SPARQL queries 8

Is James Hendler the author of more than one Paper?

Fill in your answer here
\square

Example output:
False

Maximum marks: 1

70 INFO216 - SPARQL queries 9

Create a new graph of all Author-s that have author-ed a Paper with Christian Bizer, including their affiliation-s and country-s. (Example output below.)

Fill in your answer here
\square
Partial example output:
@prefix: [http://ex.org\#](http://ex.org%5C#) .
:Christian_Bizer a :Author ;
:affiliation :University_of_Mannheim ;
:country :Germany ;
:name "Christian Bizer" .

Maximum marks: 1

71 INFO216-SPARQL queries 10

Create a new graph of all Author-s that have author-ed a Paper with Christian Bizer, including their Paper-s, affiliation-s and country-s.

Fill in your answer here
\square

Partial example output:
@prefix : [http://ex.org\#](http://ex.org%5C#) .
:Christian_Bizer a :Author ;
:affiliation :University_of_Mannheim ;
:country :Germany ;
:name "Christian Bizer" .
:DBpedia_A_nucleus a :Paper ;
:author :Christian_Bizer, :Soren_Auer ;
:title "DBpedia A nucleus" .

Maximum marks: 1

72 INFO216-SPARQL updates 1

An Organization that is an Author's affiliation is an Institution.

Fill in your answer here

\square

Maximum marks: 1

73 INFO216-SPARQL updates 2

If an Author has a country, the then that Author's affiliation Organization is locatedln the same Country.

Fill in your answer here
\square

Maximum marks: 1

74 INFO216-SPARQL updates 3

A Paper is producedBy the Organization-s its Author-s are affiliated with.

Fill in your answer here
\square

Maximum marks: 1

75 INFO216-SPARQL updates 4

A Paper is producedln the Country-s of its Author-s Institutions are located in.

Fill in your answer here
\square

Maximum marks: 1

76 INFO216-SPARQL updates 5

Delete all direct (country) connections between Author-s and Country-s.

Fill in your answer here
\square

Maximum marks: 1

77 INFO216-SPARQL updates 6

If a Paper has more than one year, delete the most recent ones.

Fill in your answer here
\square

Maximum marks: 1

i Part 7 - rdflib understanding

In this part you are given a Python program that loads the ontology from Part 2a. It then reads the papers and authors from Part $2 b$ from files. Finally, the program saves them together in a knowledge graph.

Unfortunately, the program does not work yet. You must identify 8 errors that must be fixed before the program can run correctly.

All the errors are somehow related to knowledge graphs and rdflib, none of them are "pure Python" errors.

Scoring: you get 2.0 point for each correctly identified error
Suggested time: 40 minutes.
Weight: 16% of the final grade.

Here are examples of input data to the program:

File papers.txt:

The semantic web;Tim Berners-Lee,James Hendler;Scientific
American;Springer Nature;2001
DBpedia A nucleus;Soren Auer,Christian Bizer;The semantic web book;Springer Nature;2007
Linked data The story so far;Christian Bizer,Tim Berners-Lee;Semantic services interoperability and web applications;IGI Global;2011

File authors.txt:

Tim Berners-Lee;Massachusetts Institute of Technology;United States Soren Auer;Leibniz University Hannover;Germany Christian Bizer;University of Mannheim;Germany James Hendler;Rensselaer Polytechnic Institute;United States

78 INFO216-rdflib errors

For each error you find in the exam program, copy the line where the error first appears. If the same error is repeated, you only copy the first line.

Leave a blank line between each error line you find.

Attached you can find a file with 8 errors to identify.

Fill in your answer here

Maximum marks: 16

79 Part 8 - Comments to the exam

If you have any comments to the exam, you can enter them here:

Fill in your answer here

Maximum marks: 0

[^0]: "IGI Global"
 "Springer Nature"

[^1]: "Christian Bizer"|"2007"^^<...>|"2011"^^<...>
 "James Hendler" |"2001"^^< ...>|"2001"^^<...>
 "Jens Lehmann" |"2007"^^<...>|"2007"^^<...>
 "Ora Lassila" |"2001"^^<...>|"2001"^^<...>
 "Soren Auer" |"2007"^^<...>|"2007"^^<...>
 "Tim Berners-Lee"|"2001"^^<...>|"2011"^^<...>
 "Tom Heath" |"2011"^^<...>|"2011"^^<...>

[^2]: "James Hendler"
 "Tim Berners-Lee"

