
Welcome to INFO216:
Knowledge Graphs

Spring 2024

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Session 12: KGs and Large Language Models
 Themes:

– What are Large Language Models (LLMs)
– Combining KGs and Large Language Models (LLMs)

• retrieval augmented knowledge fusion
• end-to-end KG construction
• LLM-augmented KG to text generation

• Readings:
– No mandatory readings beyond these slides
– Supplementary resource in the wiki <http://wiki.uib.no/info216>:

• Pan et al. (2024): Unifying large language models and knowledge graphs:
A roadmap.

• Vaswani et al. (2017): Attention is all you need.

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Readings

Large Language
Models (LLMs)

Transformers
• A deep neural network architecture

– many encoder layers transform
the input text into an abstract
representation (encoding as
embeddings / vectors)

– many decoder layers generate
an output text from the abstract
representation (encoding)

– attention modules in the
encoder and decoder layers
are trained to make use of the
context of each word

Vaswani et al. (2017). Attention is all you need.
Advances in neural information processing systems, 30.

• Basic training
– the transformer learns to

regenerate its input text as
output text via the abstract
representation

– word masking: predict the
missing (masked) words
(tokens) in the input text

– autoregression: predict the
next word in the input text

• Also different types of additional
training: fine tuning on specific
tasks and instruction tuning

Transformers

https://jalammar.github.io/images/t/transformer_resideual_layer_norm_3.png

The decoder
is great at

generating text

The encoder
is great at
understanding
text

Transformer variants
• Autoencoder models

– encoder + decoder is trained to reconstruct masked input via the
abstract representation (encoding)

– then the decoder is thrown away
– fine-tuning for tasks like dimensionality reduction, text classification,

named entity recognition
• Encoder + decoder

– can be trained like an autoencoder and the decoder is kept
– versatile and flexible in generating texts and can be instruction aligned

• Autoregressive models
– decoder (only) is trained to predict the next token from previous tokens
– well-suited for tasks like language generation
– can be instruction aligned

Evolution of LLMs

Pan et al. (2024)

Transformer model sizes

KGs + LLMs

Why combine
LLMs and
KGs?

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024).
Unifying large language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engineering.

Some uses of LLMs and KGs.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024).
Unifying large language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engineering.

How to combine
LLMs and KGs?

Pan et al. (2024)

(1)

(2)(3)

Retrieval-augmented knowledge fusion
• Problem

– LLMs lack specific knowledge
– LLMs hallucinate, may not generalise well
– LLMs are not continuously updated

• Solution
– keep text and knowledge and text spaces separate
– retrieve relevant KG facts as supplementary input to LLM

• Graph Retrieval Augmented Generation (GRAG)
– aka “Retrieval-Augmented Knowledge Fusion”

• Retrieval Augmented Generation (RAG) can also be done with plain text
infusion

Graph RAG
1) Receive prompt P from user
2) Identify entities

in prompt P
3) Query KG about

entities
4) Receive related

KG facts
5) Enhance prompt P with KG facts
6) Send enhanced P to LLM
7) Receive response
8) Perhaps: align response text with

KG facts
9) Return response to user

Pan et al. (2024)

Graph RAG example

Use a Named Entity Recogniser
(NER), like DBpedia Spotlight:
● https://www.wikidata.org/

entity/Q114565318
● retrieve https://www.wikidata.org/

entity/Q114565318.ttl
● size: >110Kb, >4000 lines

Graph RAG example

Use a Named Entity Recogniser
(NER), like DBpedia Spotlight:
● https://www.wikidata.org/

entity/Q114565318
● retrieve https://www.wikidata.org/

entity/Q114565318.ttl
● size: >110Kb, >4000 lines

+ >4000 more lines

Graph RAG example

PREFIX wd: <http://www.wikidata.org/entity/>

SELECT ?sLabel ?pwLabel ?oLabel WHERE {

 BIND(wd:Q114565318 AS ?s)
 ?s ?p ?o .

 FILTER (
 (STRSTARTS(STR(?p), STR(wdt:)) &&
 STRSTARTS(STR(?o), STR(wd:)) || DATATYPE(?o) = xsd:string)
 ||
 (?p IN (rdfs:label, skos:altLabel, schema:description) &&
 DATATYPE(?o) = rdf:langString && LANG(?o) = "en")
)

 BIND (IRI(REPLACE(STR(?p), STR(wdt:), STR(wd:))) AS ?pw)
 SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }

} LIMIT 100

Do a Wikidata SPARQL
query to only retrieve
“mostly truthy” triples

about wd:Q114565318 .

Remember
Lab 6...

Use a Named Entity Recogniser
(NER), like DBpedia Spotlight:
● https://www.wikidata.org/

entity/Q114565318
● retrieve https://www.wikidata.org/

entity/Q114565318.ttl
● size: >110Kb, >4000 lines

● do a Wikidata SPARQL query to
only retrieve “mostly truthy” triples
about wd:Q114565318
● size: 4.6Kb, 76 lines

+ 70 more lines

LLM-augmented
KG Construction

● Piecewise KG
construction

1) entity discovery
(incl NER)

2) coreference
resolution

3) relation extraction
● End-to-End KG

construction
● can also be

piecewise

Pan et al. (2024)

Switzerland wins Eurovision, Ireland comes sixth

Switzerland's Nemo was crowned the Eurovision Song Contest
2024 winner following an eventful day in Malmö, Sweden, while
Ireland's Bambie Thug finished sixth place.

The Swiss non-binary artist triumphed at this year’s contest with
their track The Code, marking the third time Switzerland
triumphed at the contest. The country won the very first edition
of the Eurovision Song Contest in 1956 and in 1988 with Celine
Dion's Ne Partez Pas Sans Moi.

Tearfully accepting the trophy, Nemo said: "I want to say thank
you so much – I hope this contest can live up to its promise and
continue to stand for peace and dignity for every person in this
world."

...and with this text, we could
do plain (non-graph) RAG

End-to-End KG construction example

Step 1: Identify entities and concepts

Step 1: Identify entities and concepts in JSON syntax

Step 1: Identify entities and concepts in JSON syntax

Step 2: Identify relations between the entities and concepts

Step 2: Identify relations between the entities and concepts

Please list the triples in this JSON list:

###
...
###

Please provide the response in valid Python syntax with the following schema:
[(from_name, relation, to_name), (from_name, relation, to_name), ...]

[
 ("Switzerland", "winner", "Eurovision Song Contest 2024"),
 ("Nemo", "representative", "Switzerland"),
 ("Nemo", "performer", "The Code"),
 ("The Code", "entry song", "Eurovision Song Contest 2024"),
 ("Ireland", "participant", "Eurovision Song Contest 2024"),
 ("Bambie Thug", "representative", "Ireland"),
 ("Malmö, Sweden", "host location", "Eurovision Song Contest 2024"),
 ("Celine Dion", "former winner", "Switzerland"),
 ("Ne Partez Pas Sans Moi", "winning song", "Eurovision Song Contest 1988"),
 ("Nemo", "advocate", "peace and dignity")
]

Graph RAG revisited

Graph RAG revisited

LLM-augmented KG-to-text Generation
• Problem

– make KGs useful in
human interactions,
e.g.:

• story-telling
• knowledge-

based chat
• Solution

– generate high-
quality texts that
accurately and
consistently
describe the
KG information

KG-to-text Generation with factual grounding

At each point in the text where a triple is narrated,
place the number of that triple in parentheses.

KG-to-text Generation with factual grounding

KG-LLM synergy:
Mutual enhancement
• Bidirectional reasoning driven

by both data and knowledge

Pan et al. (2024)

Hope to see you in
INFO320 this autumn

- and Best of Luck
on the Exam!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

