
© Andreas L. Opdahl 2020

INFO216:
Knowledge Graphs

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

© Andreas L. Opdahl 2020

Session S06: RDFS Plus
 Themes:

– what and why?

– basic OWL constructs (“RDFS-Plus”):
• more precise properties
• sameness and difference
• complex classes (→ S13)

• Programming in RDFLib

© Andreas L. Opdahl 2020

Readings

• Allemang & Hendler (2011):
Semantic Web for the Working Ontologist
– chapter 8 (“RDFS Plus”)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

http://wiki.uib.no/info216 → Python Examples → Lecture 5: RDFS inference

http://wiki.uib.no/info216

© Andreas L. Opdahl 2020

Web Ontology
Language (OWL)

© Andreas L. Opdahl 2020

RDFS is a useful starting point...

• But there's lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 activePlayers, a VolleyballTeam 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!

© Andreas L. Opdahl 2020

RDFS is a useful starting point...

• But there's lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 activePlayers, a VolleyballTeam 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more! (→ S13)

© Andreas L. Opdahl 2020

Basic idea

• Web Ontology Language (OWL):
– builds on RDF and RDFS
– uses classes and properties from RDF and RDFS
– adds precision and formality

• Basic OWL-concepts:
– owl:Thing owl:sameAs rdfs:Resource .

– owl:Class owl:sameAs rdfs:Class .

– “owl:Property” rdfs:subClassOf rdf:Property .
– “owl:Individual” rdfs:subClassOf rdfs:Resource .

good practice: keep these three disjoint, i.e., no
resource has more than one of them as rdf:type

© Andreas L. Opdahl 2020

http://www.w3.org/TR/owl2-rdf-based-semantics/

© Andreas L. Opdahl 2020

What does OWL offer?

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• (more on this later)

© Andreas L. Opdahl 2020

Reuses or specialises RDFS

• Reused in OWL:
– rdf:type, rdf:Property, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:domain, rdfs:range
– ...and lots of other stuff...

• Renamed by OWL:

– owl:Thing, owl:Class, owl:ObjectProperty

• Specialised by OWL:
– everything else in OWL specialises

something in RDF/RDFS

© Andreas L. Opdahl 2020

Basic OWL
(“RDFS-Plus”)

© Andreas L. Opdahl 2020

Inverse properties

• Properties can be each other's reverses (with subject and
object swapped), e.g.,

– rex:HaakonMagnus fam:hasParent rex:Harald .

– rex:Harald fam:hasChild rex:HaakonMagnus .

• P1 owl:inverseOf P2:

– fam:hasParent owl:inverseOf fam:hasChild .

– owl:inverseOf owl:inverseOf owl:inverseOf .

– owl:inverseOf a owl:ObjectProperty .

• “Entailment rules”:

– if P1 owl:inverseOf P2 then

• P2 owl:inverseOf P1 .

– if S P1 O . P1 owl:inverseOf P2 then

• O P2 S .

© Andreas L. Opdahl 2020

RDFS inference in RDFLib

• import owlrl.RDFSClosure

rdfs = owlrl.RDFSClosure
.RDFS_Semantics(g, False, False, False)

rdfs.closure()
rdfs.flush_stored_triples()

http://wiki.uib.no/info216 → Python Examples → Lecture 5: RDFS inference

http://wiki.uib.no/info216

© Andreas L. Opdahl 2020

Basic OWL inference in RDFLib

• import owlrl.RDFSClosure

rdfs = owlrl.RDFSClosure
.RDFS_Semantics(g, False, False, False)

rdfs.closure()
rdfs.flush_stored_triples()

• import owlrl.CombinedClosure

owl = owlrl.CombinedClosure
.RDFS_OWLRL_Semantics(g, False, False, False)

owl.closure()
owl.flush_stored_triples()

© Andreas L. Opdahl 2020

Symmetric properties

• Some properties are their own inverse, e.g.,

– rex:Harald fam:marriedTo rex:Sonja .

– rex:Sonja fam:marriedTo rex:Harald .

• P rdf:type owl:SymmetricProperty:

– fam:marriedTo a owl:SymmetricProperty .

– owl:inverseOf a owl:SymmetricProperty .

– owl:SymmetricProperty rdfs:subClassOf
owl:ObjectProperty .

• Entailment rules:

– if P a owl:SymmetricProperty then

• P owl:inverseOf P .

– if S P O . P a owl:SymmetricProperty then

• O P S .

© Andreas L. Opdahl 2020

Asymmetric, reflexive, irreflexive properties

• New in OWL2:
– both reflexive and irreflexive properties:

• owl:sameAs a owl:ReflexiveProperty .
– “every resource is owl:sameAs itself”

• fam:hasChild a owl:IrreflexiveProperty .
– “no resource can be fam:hasChild of itself”

• many properties are neither!
– both symmetric and asymmetric properties:

• fam:marriedTo a owl:SymmetricProperty .
– “fam:marriedTo is always mutual (two-way)”

• fam:hasChild a owl:AsymmetricProperty .
– “no resources can be fam:hasChild of each other”

• many properties are neither!

© Andreas L. Opdahl 2020

Transitive properties

• Some properties can form chains so that the result is the
property itself, e.g.:

– rex:HaakonMagnus fam:hasAncestor rex:Harald .

– rex:Harald fam:hasAncestor rex:Olav .

– rex:HaakonMagnus fam:hasAncestor rex:Olav .

• P a owl:TransitiveProperty:

– fam:hasAncestor a owl:TransitiveProperty .

– rdfs:subClassOf a owl:TransitiveProperty .

– rdfs:subPropertyOf a owl:TransitiveProperty .

• Entailment rules:

– “if S P X . X P O . P a owl:TransitiveProperty then

• S P O .”

© Andreas L. Opdahl 2020

Functional properties

• Each subject can only have one object value for the functional
property, e,g.,

– fam:mother a owl:FunctionalProperty .

– fam:birthdate a owl:FunctionalProperty .

– owl:FunctionalProperty rdfs:subClassOf “owl:Property” .

• “Entailment rule”:

– if S P O1 . S P O2 . P a owl:FunctionalProperty then

• O1 owl:sameAs O2 .

– This rule is for owl:ObjectProperties

– There is a corresponding rule for owl:DatatypeProperties

• but if two different literals become asserted as
owl:sameAs one another, the ontology is inconsistent

© Andreas L. Opdahl 2020

Inverse functional properties

• Two different subjects cannot have the same object for an
inverse functional property, i.e.,
– fam:persNum a owl:InverseFunctionalObjectProperty .

– fam:persNum a owl:FunctionalProperty .

• Inverse functional properties are unique
for each individual
– used for identifiers in OWL 1

– OWL 2 has a built-in owl:hasKey property for identifiers:

• similar to inverse functional object properties

• can only be used with OWL 2's owl:NamedIndividuals

• ...not for anonymous “owl:Individuals”

© Andreas L. Opdahl 2020

Summary: more precise properties

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (later)

– chained properties, e.g.:
fam:hasGrandparent

owl:propertyChainAxiom (:hasParent :hasParent) .

© Andreas L. Opdahl 2020

Individual equivalence

• Two individuals (with different IRI-s) may represent the same
thing:

– http://dbpedia.org/resource/Amanda_Plummer

– http://yago-knowledge.org/resource/Amanda_Plummer

– http://data.linkedmdb.org/resource/actor/34880

• I1 owl:sameAs I2:

– owl:sameAs a owl:ReflexiveProperty .

– owl:sameAs a owl:SymmetricProperty .

– owl:sameAs a owl:TransitiveProperty .

• owl:sameAs is an equivalence relation:

• because it is reflexive, symmetric and transitive

© Andreas L. Opdahl 2020

Unique Name Assumption (UNA)

• If two resources have different names, do they necessarily
represent different things?

• RDF and OWL does not assume this!

– in RDF and OWL, we do not know whether resources with
different names represent different things or not

• We can use

– owl:sameAs – two resources represent the same thing!

– owl:differentFrom – they represent different things!

• Some ICT-languages and technologies use UNA, others do
not!

© Andreas L. Opdahl 2020

Individual difference

• A pair of individuals with different names (IRI-s)
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• ...is not transitive

© Andreas L. Opdahl 2020

Individual difference

• A pair of individuals with different names (IRI-s)
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• A group of individuals with different names (IRI-s)
must represent different things, e.g.,

– [a owl:AllDifferent] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

) .

© Andreas L. Opdahl 2020

Individual difference

• A pair of individuals with different names (IRI-s)
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• A group of individuals with different names (IRI-s)
must represent different things, e.g.,

– [a owl:AllDifferent] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

) .

– owl:AllDifferent and owl:distinctMembers are special
constructs in OWL

• they must always be used together

– ...corresponds to pairwise owl:differentFrom between
all individuals in the owl:distinctMembers-list

© Andreas L. Opdahl 2020

Equivalent classes

• Two classes (with different IRI-s) represent the same class:

• C1 owl:equivalentClass C2:

– owl:equivalentClass a owl:ReflexiveProperty .

– owl:equivalentClass a owl:SymmetricProperty .

– owl:equivalentClass a owl:TransitiveProperty .

• owl:equivalentClass is another equivalence relation:

• it is reflexive, symmetric and transitive

• means the same as

– C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C1

© Andreas L. Opdahl 2020

Disjoint classes

• Some classes cannot have the same individual as a member,

– fam:Male owl:disjointWith fam:Female .

– owl:disjointWith a owl:SymmetricProperty .

• ...but it is not transitive

• I.e., no individual can have both classes as its rdf:type

– ...corresponds to owl:differentFrom between all pairs of
individuals in fam:Male and fam:Female

• Preferred in formal versions of OWL (no “punning”):

– owl:Class owl:disjointWith “owl:Property” .

– owl:Class owl:disjointWith “owl:Individual” .

– “owl:Property” owl:disjointWith owl:Individual .

© Andreas L. Opdahl 2020

Equivalent properties

• Two properties (with different IRI-s) represent the same
property:

• P1 owl:equivalentProperty P2:

– owl:equivalentProperty a owl:ReflexiveProperty .

– owl:equivalentProperty a owl:SymmetricProperty .

– owl:equivalentProperty a owl:TransitiveProperty .

• owl:equivalentProperty is another equivalence relation:

• it is reflexive, symmetric and transitive

• Also disjoint properties:

• :hasParent owl:propertyDisjointWith :hasSpouse .

© Andreas L. Opdahl 2020

Summary: sameness and difference

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members

© Andreas L. Opdahl 2020

Complex OWL classes
(S13)

© Andreas L. Opdahl 2020

Union classes

• A union class contains all the individuals
in either of two or more other classes, e.g.,

– fam:Parent
a owl:Class;

 owl:unionOf (fam:Father fam:Mother) .

• Entailment rule:
– if C owl:equivalentClass owl:unionOf (C1... Cn) then

• C1 rdfs:subClassOf C Cn rdfs:subClassOf C .

• why not say just, e.g.,:

– fam:Father rdfs:subClassOf fam:Parent .

– fam:Mother rdfs:subClassOf fam:Parent .

?

© Andreas L. Opdahl 2020

Intersection classes

• An intersection class contains all the individuals
in all of two or more other classes, e.g.

– uib:StudentAssistant
a owl:Class;

 owl:intersectionOf (uib:Student uib:Teacher) .

• Entailment rule:

– if C owl:equivalentClass owl:intersectionOf (C1... Cn) then

• C rdfs:subClassOf C1 C rdfs:subClassOf Cn .

• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .

– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?

© Andreas L. Opdahl 2020

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father owl:complementOf fam:Mother .

© Andreas L. Opdahl 2020

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father owl:complementOf fam:Mother .

– ...but is this correct?!

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father

a owl:Class;
owl:complementOf fam:Mother .

© Andreas L. Opdahl 2020

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father

owl:intersectionOf (
fam:Parent
owl:complementOf fam:Mother

) .

© Andreas L. Opdahl 2020

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father

owl:intersectionOf (
fam:Parent
[a owl:Class ;
 owl:complementOf fam:Mother
]

) .

© Andreas L. Opdahl 2020

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father

owl:intersectionOf (
fam:Parent
[owl:complementOf fam:Mother]

) .

© Andreas L. Opdahl 2020

Closed World Assumption (CWA)

• Whenever something is not explicitly stated in the ontology,
can we assume that the opposite is the case?

– DBpedia only lists three James Dean movies –
can we thus assume that he only played in three?

• Classical logic and many ICT languages assume so:

– this is the “Closed World Assumption” (CWA)

• In RDF and OWL, we do not assume that something is false
just because it is not stated

– this is the “Open World Assumption” (OWA)

© Andreas L. Opdahl 2020

Enumeration classes

• An enumeration class is defined by exhaustively listing all its
member individuals, e.g.:

– [a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter)] .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly

© Andreas L. Opdahl 2020

Enumeration classes

• An enumeration class is defined by exhaustively listing all its
member individuals, e.g.:

– [a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter)] .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly

© Andreas L. Opdahl 2020

Other ways to write complex classes

• Why can also write:
cal:Season

 owl:oneOf (cal:Spring ... cal:Winter) .

or
cal:Season owl:equivalentClass [

 owl:oneOf (cal:Spring ... cal:Winter)] .

• or (a weaker claim):
cal:Season owl:subClassOf [

 owl:oneOf (cal:Spring ... cal:Winter)] .

• Reason:
– sometimes we just need rdfs:subClassOf

• and it can be computationally more efficient
– owl:equivalentClass entails two-way rdfs:subClassOf

© Andreas L. Opdahl 2020

Summary: complex classes

• owl:oneOf
• owl:unionOf
• owl:intersectionOf

• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual,

owl:assertionProperty, owl:targetIndividual

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

