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Session S06: RDFS Plus
 Themes:

– what and why?

– basic OWL constructs (“RDFS-Plus”):
• more precise properties
• sameness and difference
• complex classes (→ S13)

• Programming in RDFLib
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Readings

• Allemang & Hendler (2011): 
Semantic Web for the Working Ontologist
– chapter 8 (“RDFS Plus”)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

http://wiki.uib.no/info216 → Python Examples → Lecture 5: RDFS inference

http://wiki.uib.no/info216
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Web Ontology
Language (OWL)
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RDFS is a useful starting point...

• But there's lots of simple stuff it cannot express, e.g.: 
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique” 

– “a Republic has exactly one President”

– “a FootballTeam has 11 activePlayers, a VolleyballTeam 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!
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Basic idea

• Web Ontology Language (OWL):
– builds on RDF and RDFS
– uses classes and properties from RDF and RDFS
– adds precision and formality

• Basic OWL-concepts:
– owl:Thing owl:sameAs rdfs:Resource .

– owl:Class owl:sameAs rdfs:Class .

– “owl:Property” rdfs:subClassOf rdf:Property .
– “owl:Individual” rdfs:subClassOf rdfs:Resource .

good practice: keep these three disjoint, i.e., no 
resource has more than one of them as rdf:type
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http://www.w3.org/TR/owl2-rdf-based-semantics/
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What does OWL offer?

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• (more on this later)
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Reuses or specialises RDFS

• Reused in OWL:
– rdf:type, rdf:Property, rdfs:subClassOf, 

rdfs:subPropertyOf, rdfs:domain, rdfs:range
– ...and lots of other stuff...

• Renamed by OWL:

– owl:Thing,  owl:Class, owl:ObjectProperty

• Specialised by OWL:
– everything else in OWL specialises 

something in RDF/RDFS
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Basic OWL
(“RDFS-Plus”)
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Inverse properties

• Properties can be each other's reverses (with subject and 
object swapped), e.g.,

– rex:HaakonMagnus fam:hasParent rex:Harald .

– rex:Harald fam:hasChild rex:HaakonMagnus .

• P1 owl:inverseOf P2: 

– fam:hasParent owl:inverseOf fam:hasChild .

– owl:inverseOf owl:inverseOf owl:inverseOf .

– owl:inverseOf a owl:ObjectProperty .

• “Entailment rules”:

– if P1 owl:inverseOf P2 then

• P2 owl:inverseOf P1 .

– if S P1 O . P1 owl:inverseOf P2 then

• O P2 S .
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RDFS inference in RDFLib

• import owlrl.RDFSClosure

rdfs = owlrl.RDFSClosure
.RDFS_Semantics(g, False, False, False)

rdfs.closure()
rdfs.flush_stored_triples()

http://wiki.uib.no/info216 → Python Examples → Lecture 5: RDFS inference

http://wiki.uib.no/info216
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Basic OWL inference in RDFLib

• import owlrl.RDFSClosure

rdfs = owlrl.RDFSClosure
.RDFS_Semantics(g, False, False, False)

rdfs.closure()
rdfs.flush_stored_triples()

• import owlrl.CombinedClosure

owl = owlrl.CombinedClosure
.RDFS_OWLRL_Semantics(g, False, False, False)

owl.closure()
owl.flush_stored_triples()
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Symmetric properties

• Some properties are their own inverse, e.g.,

– rex:Harald fam:marriedTo rex:Sonja .

– rex:Sonja fam:marriedTo rex:Harald .

• P rdf:type owl:SymmetricProperty:

– fam:marriedTo a owl:SymmetricProperty .

– owl:inverseOf a owl:SymmetricProperty .

– owl:SymmetricProperty rdfs:subClassOf 
owl:ObjectProperty .

• Entailment rules:

– if P a owl:SymmetricProperty then

• P owl:inverseOf P .

– if S P O . P a owl:SymmetricProperty then

• O P S .
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Asymmetric, reflexive, irreflexive properties

• New in OWL2:
– both reflexive and irreflexive properties:

• owl:sameAs a owl:ReflexiveProperty .
– “every resource is owl:sameAs itself”

• fam:hasChild a owl:IrreflexiveProperty .
– “no resource can be fam:hasChild of itself”

• many properties are neither!
– both symmetric and asymmetric properties:

• fam:marriedTo a owl:SymmetricProperty .
– “fam:marriedTo is always mutual (two-way)”

• fam:hasChild a owl:AsymmetricProperty .
– “no resources can be fam:hasChild of each other”

• many properties are neither!
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Transitive properties

• Some properties can form chains so that the result is the 
property itself, e.g.:

– rex:HaakonMagnus fam:hasAncestor rex:Harald .

– rex:Harald fam:hasAncestor rex:Olav .

– rex:HaakonMagnus fam:hasAncestor rex:Olav .

• P a owl:TransitiveProperty:

– fam:hasAncestor a owl:TransitiveProperty .

– rdfs:subClassOf a owl:TransitiveProperty .

– rdfs:subPropertyOf a owl:TransitiveProperty .

• Entailment rules:

– “if S P X . X P O . P a owl:TransitiveProperty then 

• S P O .”
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Functional properties

• Each subject can only have one object value for the functional 
property, e,g.,

– fam:mother a owl:FunctionalProperty .

– fam:birthdate a owl:FunctionalProperty .

– owl:FunctionalProperty rdfs:subClassOf “owl:Property” .

• “Entailment rule”:

– if S P O1 . S P O2 . P a owl:FunctionalProperty then

• O1 owl:sameAs O2 .

– This rule is for owl:ObjectProperties

– There is a corresponding rule for owl:DatatypeProperties

• but if two different literals become asserted as 
owl:sameAs one another, the ontology is inconsistent
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Inverse functional properties

• Two different subjects cannot have the same object for an 
inverse functional property, i.e., 
– fam:persNum a owl:InverseFunctionalObjectProperty .

– fam:persNum a owl:FunctionalProperty .

• Inverse functional properties are unique 
for each individual
– used for identifiers in OWL 1

– OWL 2 has a built-in owl:hasKey property for identifiers:

• similar to inverse functional object properties

• can only be used with OWL 2's owl:NamedIndividuals

• ...not for anonymous “owl:Individuals”
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Summary: more precise properties

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (later)

– chained properties, e.g.:
fam:hasGrandparent  

owl:propertyChainAxiom  ( :hasParent  :hasParent ) .
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Individual equivalence

• Two individuals (with different IRI-s) may represent the same 
thing: 

– http://dbpedia.org/resource/Amanda_Plummer

– http://yago-knowledge.org/resource/Amanda_Plummer

– http://data.linkedmdb.org/resource/actor/34880

• I1 owl:sameAs I2:

– owl:sameAs a owl:ReflexiveProperty .

– owl:sameAs a owl:SymmetricProperty .

– owl:sameAs a owl:TransitiveProperty .

• owl:sameAs is an equivalence relation:

• because it is reflexive, symmetric and transitive
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Unique Name Assumption (UNA)

• If two resources have different names, do they necessarily 
represent different things?

• RDF and OWL does not assume this!

– in RDF and OWL, we do not know whether resources with 
different names represent different things or not

• We can use

– owl:sameAs – two resources represent the same thing!

– owl:differentFrom – they represent different things!

• Some ICT-languages and technologies use UNA, others do 
not!
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Individual difference

• A pair of individuals with different names (IRI-s) 
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• ...is not transitive
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• A group of individuals with different names (IRI-s) 
must represent different things, e.g.,

– [ a owl:AllDifferent ] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter 

) .
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Individual difference

• A pair of individuals with different names (IRI-s) 
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• A group of individuals with different names (IRI-s) 
must represent different things, e.g.,

– [ a owl:AllDifferent ] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter 

) .

– owl:AllDifferent and owl:distinctMembers are special 
constructs in OWL

• they must always be used together

– ...corresponds to pairwise owl:differentFrom between 
all individuals in the owl:distinctMembers-list
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Equivalent classes

• Two classes (with different IRI-s) represent the same class: 

• C1 owl:equivalentClass C2:

– owl:equivalentClass a owl:ReflexiveProperty .

– owl:equivalentClass a owl:SymmetricProperty .

– owl:equivalentClass a owl:TransitiveProperty .

• owl:equivalentClass is another equivalence relation:

• it is reflexive, symmetric and transitive

• means the same as

– C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C1
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Disjoint classes

• Some classes cannot have the same individual as a member, 

– fam:Male owl:disjointWith fam:Female .

– owl:disjointWith a owl:SymmetricProperty .

• ...but it is not transitive

• I.e., no individual can have both classes as its rdf:type

– ...corresponds to owl:differentFrom between all pairs of 
individuals in fam:Male and fam:Female

• Preferred in formal versions of OWL (no “punning”):

– owl:Class owl:disjointWith “owl:Property” .

– owl:Class owl:disjointWith “owl:Individual” .

– “owl:Property” owl:disjointWith owl:Individual .
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Equivalent properties

• Two properties (with different IRI-s) represent the same 
property: 

• P1 owl:equivalentProperty P2:

– owl:equivalentProperty a owl:ReflexiveProperty .

– owl:equivalentProperty a owl:SymmetricProperty .

– owl:equivalentProperty a owl:TransitiveProperty .

• owl:equivalentProperty is another equivalence relation:

• it is reflexive, symmetric and transitive

• Also disjoint properties:

• :hasParent  owl:propertyDisjointWith  :hasSpouse .
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Summary: sameness and difference

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent 

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members 
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Complex OWL classes
(S13)
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Union classes

• A union class contains all the individuals 
in either of two or more other classes, e.g.,

– fam:Parent 
a owl:Class;

  owl:unionOf ( fam:Father fam:Mother ) .

• Entailment rule:
– if C owl:equivalentClass owl:unionOf ( C1... Cn ) then

• C1 rdfs:subClassOf C . ... Cn rdfs:subClassOf C .

• why not say just, e.g.,:

– fam:Father rdfs:subClassOf fam:Parent .

– fam:Mother rdfs:subClassOf fam:Parent .

?
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Intersection classes

• An intersection class contains all the individuals 
in all of two or more other classes, e.g.

– uib:StudentAssistant 
a owl:Class; 

  owl:intersectionOf ( uib:Student uib:Teacher ) .

• Entailment rule:

– if C owl:equivalentClass owl:intersectionOf ( C1... Cn ) then

• C rdfs:subClassOf C1 . ... C rdfs:subClassOf Cn .

• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .

– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?
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Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father owl:complementOf fam:Mother .
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Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father owl:complementOf fam:Mother .

– ...but is this correct?!



Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father

a owl:Class;
owl:complementOf fam:Mother .
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Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father 

owl:intersectionOf ( 
fam:Parent 
owl:complementOf fam:Mother

) .
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Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father 

owl:intersectionOf ( 
fam:Parent
[ a owl:Class ;
  owl:complementOf fam:Mother
]

) .
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Complement classes

• A complement class contains all the individuals 
that are not in another class:
– fam:Father 

owl:intersectionOf ( 
fam:Parent
[  owl:complementOf fam:Mother  ]

) .
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Closed World Assumption (CWA)

• Whenever something is not explicitly stated in the ontology, 
can we assume that the opposite is the case?

– DBpedia only lists three James Dean movies – 
can we thus assume that he only played in three?

• Classical logic and many ICT languages assume so:

– this is the “Closed World Assumption” (CWA)

• In RDF and OWL, we do not assume that something is false 
just because it is not stated

– this is the “Open World Assumption” (OWA)
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Enumeration classes

• An enumeration class is defined by exhaustively listing all its 
member individuals, e.g.:

– [  a owl:Class ; 
  owl:oneOf ( cal:Spring ... cal:Winter )  ] .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly
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Other ways to write complex classes

• Why can also write:
cal:Season  

  owl:oneOf ( cal:Spring ... cal:Winter ) .

or
cal:Season owl:equivalentClass [ 

  owl:oneOf ( cal:Spring ... cal:Winter ) ] .

• or (a weaker claim):
cal:Season owl:subClassOf [ 

  owl:oneOf ( cal:Spring ... cal:Winter ) ] .

• Reason:
– sometimes we just need rdfs:subClassOf

• and it can be computationally more efficient
– owl:equivalentClass entails two-way rdfs:subClassOf



© Andreas L. Opdahl 2020

Summary: complex classes

• owl:oneOf
• owl:unionOf
• owl:intersectionOf

• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual, 

owl:assertionProperty, owl:targetIndividual
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