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Abstract. The Visual Notation for OWL Ontologies (VOWL) is a well-specified visual language for the user-oriented represen-
tation of ontologies. It defines graphical depictions for most elements of the Web Ontology Language (OWL) that are combined
to a force-directed graph layout visualizing the ontology. In contrast to related work, VOWL aims for an intuitive and compre-
hensive representation that is also understandable to users less familiar with ontologies. This article presents VOWL in detail
and describes its implementation in two different tools: Protégé VOWL and WebVOWL. The first is a plugin for the ontology
editor Protégé, the second a standalone web application. Both tools demonstrate the applicability of VOWL by means of various
ontologies. In addition, the results of three user studies that evaluate the comprehensibility and usability of VOWL are summa-
rized. They are complemented by findings from an interview with experienced ontology users and from testing the visual scope
and completeness of VOWL with a benchmark ontology. The evaluations helped to improve VOWL and confirm that it produces

comparatively intuitive and comprehensible ontology visualizations.
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1. Introduction

Ontologies have received a lot of attention with the
rise of the Semantic Web as a way to give information
well-defined meaning [6]. Nowadays, they are used in
many different contexts to structure and organize in-
formation [91]. As a consequence, an increasing num-
ber of people in modern knowledge societies come
into contact with ontologies. They are no longer exclu-
sively used by ontology experts but also by other user
groups, ranging from domain experts to non-expert
users. However, especially these casual ontology users
often have difficulties to understand ontologies.

Visualizations can help in this regard by assisting in
the development, exploration, verification, and sense-
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making of ontologies [33,53,60]. They are particularly
useful to casual users, but can also provide a new per-
spective for ontology experts.

Although several visualizations for ontologies have
been developed in the last couple of years, they of-
ten focus on certain aspects of ontologies and are hard
to read for casual users. Furthermore, many visualiza-
tions are tailored to specific tasks or use special types
of diagrams that must first be learned to understand the
ontology representation. A review of existing ontology
visualizations is given in Section 2 of this article.

The Visual Notation for OWL Ontologies (VOWL)
aims to fill this gap by defining a comprehensive visual
language for the representation of ontologies that can
also be understood by casual ontology users with only
little training. It is designed for the Web Ontology Lan-
guage (OWL) [100], which has become the de facto
standard to define ontologies. VOWL specifies graph-
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ical depictions for most language constructs of OWL
that are combined to a graph visualization representing
the ontology. It can be used to generate static ontology
visualizations, but also enables the interactive explo-
ration of ontologies and the customization of the visual
layout.

We compared an early version of VOWL [76] to the
UML-based visualization of ontologies [75]. Based on
insights from that comparison and other feedback, we
reworked the notation and developed VOWL 2, with
significant improvements and more precise mappings
to OWL [68]. VOWL 2 will be presented in Section 3,
followed by the description of two VOWL implemen-
tations in Section 4: ProtégéVOWL, a plugin for the
ontology editor Protégé, and WebVOWL, a responsive
web application based on open standards.

VOWL and its implementations have been evalu-
ated in several user studies that are summarized in Sec-
tion 5. In that section, we also report on an interview
with experienced ontology users providing additional
insights with regard to VOWL. Finally, an evaluation
of the visual scope and completeness of VOWL based
on a benchmark ontology is provided in Section 5, be-
fore we conclude this article in Section 6.

2. Related Work

A number of visualizations for ontologies have been
presented in the last couple of years. Surveys can
be found in [22,53,60], whereas comparative evalu-
ations of selected visualizations are given in [31,36,
54], among others. Several of the visualizations have
been implemented as standalone applications, but most
are realized as plugins for ontology editors like Pro-
tégé [93].

2.1. Graph Visualizations of Ontologies

Many approaches visualize ontologies as graphs,
which reflects the way concepts and relationships are
organized in OWL ontologies. The graphs are typically
rendered in force-directed, radial, or hierarchical lay-
outs, often resulting in appealing visualizations. How-
ever, only few visualizations show complete ontol-
ogy information—i.e., all classes and properties along
with their attributes, such as functional or transitive for
properties—, but most approaches focus on certain as-
pects.

For instance, OWLViz [49], OntoTrack [61], and
KC-Viz [72] visualize merely the class hierarchy of

ontologies. GLOW [48] also focuses on the class hier-
archy, but provides different layouts in multiple views
and is capable to visualize additional property relations
using hierarchical edge bundling [47]. A related multi-
view approach has been presented in [86], consisting
of aradial layout, an indented tree, and a graph visual-
ization. It also depicts some relations besides the inher-
itance structure of the class hierarchy, but does not pro-
vide sufficient detail for a qualitative interpretation of
these relations. The same holds for BioMixer [30] that
offers different views and graph layouts as well. Like-
wise, OntoGraf [25], FlexViz [26], OLSVis [98], and
OWLPropViz [102] represent various types of prop-
erty relations, but do not show datatype properties and
property characteristics required to fully understand
the information modeled in ontologies.

A smaller number of works provide more compre-
hensive graph visualizations that represent all key el-
ements of ontologies. Unfortunately, the different on-
tology elements are often hard to distinguish in these
visualizations. TGViz [1] and NavigOWL [52], for ex-
ample, use plain node-link diagrams where all nodes
and links look the same except for their color. This is
different in SOVA [7] and GrOWL [59], which define
more elaborate notations using different symbols, col-
ors, and node shapes. However, as the notations of both
SOVA and GrOWL rely on symbols from Description
Logic [2] and contain many abbreviations, they are not
that suitable for casual users. Furthermore, visualiza-
tions created with SOVA and GrOWL feature a large
number of crossing edges, which has a negative impact
on their readability [68].

Finally, there are 3D graph visualizations for on-
tologies, such as OntoSphere [9], Onto3DViz [35], and
OntoSELF [89], as well as tools that use hyperbolic
trees to visualize ontologies, such as OntoRama [23]
and Ontobroker [27]. However, these works again fo-
cus only on specific aspects of ontologies, such as the
class hierarchy or relationships between certain OWL
elements.

2.2. Specific Diagram Types

While the reported graph visualizations use basic
node-link diagrams to represent ontologies, there are
also a number of works that apply other diagram types.
For instance, OWL-VisMod [32] and Jambalaya [94]
use treemaps, among others, to depict the class hier-
archy of ontologies. Jambalaya additionally provides
a nested graph visualization that allows to split up
the class hierarchy into different views. A similar vi-
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sualization is used in Knoocks [58], which is more-
over complemented by a view that shows individu-
als and their relations. Also related is the visualization
approach of CropCircles [103], which represents the
class hierarchy as nested circles similar to treemaps.
However, all these works address once again mainly
the visualization of inheritance relations, without con-
sidering all the other property relations that are usually
contained in ontologies.

The Cluster Maps approach also provides a visual-
ization based on nested circles that has been applied to
ontologies [28]. Instead of showing the class hierarchy,
like in CropCircles, Cluster Maps visualize individuals
grouped by the classes they are instances of. Each in-
dividual is depicted as a small sphere that is placed in-
side a larger circle representing the class it belongs to.
Cluster Maps have, for instance, been integrated into
the DOPE browser [95]. A similar visualization is used
in the VIScover system [62,78], which provides inter-
active filtering and basic editing options. While being
appealing visualizations, Cluster Maps and VIScover
show only a selection of classes along with the indi-
viduals that are members of these classes, but not com-
plete ontology information.

OntoTrix [3] represents ontologies by means of
the NodeTrix [46] visualization technique, which is a
combination of node-link diagrams and adjacency ma-
trices. Like Cluster Maps, OntoTrix focuses on the vi-
sualization of individuals and their connections within
the ontology.

In other words, most of the latter approaches address
the visualization of what is known as the Assertional
Box (ABox) in Description Logic [2], whereas VOWL
deals primarily with the visualization of the Termino-
logical Box (TBox), like most other ontology visual-
izations.

2.3. UML-based Ontology Visualizations

A powerful type of diagram related to OWL and of-
ten reused to visualize ontologies is the class diagram
of the Unified Modeling Language (UML) [80]. Pre-
cise mappings between OWL and UML class diagrams
are specified in the Ontology Definition Metamodel
(ODM) [81]. Related approaches have, for instance,
been presented in [12,16,21,55,82].

There are numerous editors for UML diagrams, but
as conventional UML editors cannot read and visual-
ize OWL files, special ontology editors or plugins for
UML editors have been developed. Examples include

OWLGtrEd [4], Visual Ontology Modeler (VOM) [57],
and TopBraid Composer [96].

A major drawback of these attempts is that they re-
quire knowledge about UML. Although many users
with an IT background are familiar with UML di-
agrams, people from other domains have difficulties
interpreting them correctly, as we found in a user
study [75]. In addition, there are also conceptual lim-
itations when using UML class diagrams for the visu-
alization of ontologies, since UML has been designed
for the representation of software rather than knowl-
edge [41,56].

2.4. Other Diagrammatic Ontology Visualizations

A UML-related type of diagram for ontology vi-
sualization is used in OntoViz [88]. It groups classes
and datatypes in boxes that are linked by properties.
VisioOWL [29] is another UML-related attempt that
has been implemented as a template for the diagram
editor Microsoft Visio. However, both types of dia-
grams share the limitation of UML class diagrams that
the resulting visualizations are rather difficult to read
for lay users.

This is different in Graffoo [24], which aims at
an easy-to-understand notation for OWL, similar to
VOWL. It comes with a comprehensive specifica-
tion [83] and has been implemented as a GraphML
extension for the diagram editor yEd. In contrast to
VOWL, Graffoo is primarily a modeling language.
It is therefore rather related to the idea of UML-
based modeling than to the visualization approach
that is followed by VOWL. This is also the case for
OWLeasyViz [15], which proposes a lightweight on-
tology editor with a simple user interface including a
nested ontology visualization.

Diagrammatic approaches of ontology visualization
have also be been developed in other contexts. For in-
stance, COE [42] adopts the popular idea of Concept
Maps [79] and applies it to the visualization of OWL
ontologies. A similar attempt has been made with Con-
cept Diagrams [51] that consider the logic of OWL in
particular. Both approaches aim for a formal represen-
tation of ontologies that precisely expresses the OWL
semantics. However, they do not propose intuitive on-
tology visualizations that are immediately understand-
able to casual users.

2.5. RDF Visualizations of Ontologies

Since any OWL ontology can be represented as an
RDF graph, it may also be visualized using the com-
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mon RDF graph notation, consisting of plain nodes
and links that form a graph [70]. Such RDF visualiza-
tions of OWL ontologies can, for instance, be gener-
ated with the RDF validation service of the W3C [99],
which outputs static images. Interactive visualizations
of RDF graphs are created by tools like RDF Grav-
ity [34], IsaViz [85], or Welkin [71].

However, RDF visualizations of ontologies quickly
become large in size, with plenty of nodes and edges,
as many OWL constructs are represented by multiple
triples in RDF. The visualizations are often hard to
read due to their size and for the fact that they provide
a one-to-one representation of the RDF triples and not
a visualization of the semantics of the OWL elements.

Finally, there are Linked Data visualizations that
are also RDF-focused and usually do not consider and
visualize complete ontologies [17]. One such tool is
RelFinder [44] that visualizes relationships between
individuals described by ontologies. Another example
is gFacet [45] where individuals are grouped by the
classes they are members of and filtered by selecting
linked individuals or data values. A related attempt
has been implemented in OOBIAN Insight [69], which
also groups individuals by their classes and visualizes
links between them.

All these tools provide some insight into the rela-
tionships of a limited set of classes and/or individuals,
but they do not visualize complete ontology informa-
tion. Furthermore, they are once again rather focused
on the ABox instead of the TBox of ontologies which
is addressed in VOWL. This is also the case for the tool
LodLive [14], which enables the visual exploration of
Linked Data using a graph visualization as well.

2.6. Discussion of Related Work

Looking at the related work, some common char-
acteristics stand out: Most ontology visualizations uti-
lize a well-known type of diagram (node-link dia-
gram, treemap, UML class diagram, etc.), are two-
dimensional, and focus on specific ontology aspects.
Only few approaches aim at a comprehensive ontology
visualization. Even less provide an explicit description
of the visual notation, i.e., a specification that precisely
defines the semantics and mappings of the graphical
elements. Often, there is no clear visual distinction be-
tween different property types or even between classes,
properties, and individuals.

Furthermore, several of the works implement a step-
wise approach of ontology exploration, where only a
root class is shown at the beginning and the user has

to navigate through the visualization (e.g., by expand-
ing and collapsing visual elements). VOWL rather pur-
sues an approach that provides users with a complete
overview of the ontology and let them subsequently
explore parts of it in depth, following the popular Vi-
sual Information Seeking Mantra of “overview first,
zoom and filter, then details-on-demand” [87]. We de-
cided on this approach, as we consider it important to
give users a visual impression of the size and topol-
ogy of the ontology before they start to explore it any
further. However, it has its limitations and challenges,
especially when it comes to the visualization of very
large ontologies, as we will discuss in Section 6.

Most importantly, VOWL aims for an intuitive vi-
sualization that is also understandable to users less fa-
miliar with ontologies, while most of the related work
has rather been designed for ontology experts.

3. Visual Notation for OWL Ontologies (VOWL)

So far, there are two versions of VOWL that we have
specified at http://purl.org/vowl/spec/.
While the first version emerged from the idea of pro-
viding an integrated representation of classes and indi-
viduals [76], VOWL 2 focuses on the visual represen-
tation of classes, properties, and datatypes.' As men-
tioned before, this information is known as the Termi-
nological Box (TBox) in Description Logic and distin-
guished from the individuals and data values that make
up the Assertional Box (ABox). The TBox is usually
most important to understand the conceptualization de-
scribed in an ontology and therefore considered ‘first-
class citizen’ in most ontology visualizations. This is
in contrast to Linked Data visualizations which typi-
cally have a stronger focus on the ABox, as we already
discussed in Section 2. A good example in this regard
is the visual query language QueryVOWL [39] that is
based on VOWL but addresses the querying of Linked
Data, and therefore focuses on the ABox.

In contrast, VOWL primarily represents the TBox
and only optionally integrates ABox information in the
visualization. We recommend to display detailed infor-
mation about individuals in another part of the user in-
terface (e.g., a sidebar) that is linked with the visual-
ization, as in the tool WebVOWL (cf. Section 4). This
design decision is supported by comments from a user
study on an earlier version of VOWL [75], expressing

IThis article refers to version 2 of VOWL if not otherwise stated.
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concerns about the scalability of an integrated TBox
and ABox visualization. Even with few individuals per
class, additional information, such as property values
of individuals, would be difficult to include in the vi-
sualization without creating lots of clutter.

VOWL uses a graph visualization, as this is consid-
ered an intuitive way to represent the structure of on-
tologies, which has been confirmed in a comparative
evaluation [31]. Figure 1 shows the VOWL visualiza-
tion of a small ontology. It represents version 1.0 of the
Modular Unified Tagging Ontology (MUTO) [63,64],
and has been created with the tool WebVOWL that is
described in Section 4.

3.1. Basic Building Blocks of VOWL

The basic building blocks of VOWL are a clearly
defined set of graphical primitives and a color scheme.
Both express specific attributes of the OWL elements
(e.g., datatype or object property, different class and
property characteristics, etc.), while considering possi-
ble combinations thereof. In addition, VOWL defines
explicit splitting rules that specify which elements are
multiplied in the graph visualization and in which way.

We chose this systematic and modular approach in
order to improve the semantics of the visual language
and to facilitate its implementation. For instance, the
small set of graphical primitives that are systematically
varied and combined match well with object-oriented
programming. The same holds for the style informa-
tion that is specified in a modular way in the CSS
stylesheet complementing the VOWL specification.

Furthermore, the graph structure was defined in a
way that it can be easily visualized (e.g., by avoiding
edges between property labels), and developers were
given some freedom in the parameterization of VOWL

Table 1
Graphical primitives used in VOWL

Primitive  Application Primitive ~ Application
O classes D datatypes, property labels
oy properties oo special classes/properties
>» property directions i'eyut:::;r labels, cardinalities

(e.g., by using an abstract color scheme that can be
customized as required).

3.1.1. Graphical Primitives

Table 1 lists the small set of graphical primitives that
VOWL is based on, along with the ontology elements
they are applied to. Classes are depicted as circles that
are connected by lines representing the properties with
their domain and range axioms. Property labels and
datatypes are displayed in rectangles, and text is used
for labels and cardinality constraints.

Where available and desired, the number of individ-
uals that are members of a class can be visually indi-
cated by the circle size. VOWL does not specify a par-
ticular scaling method for the circle radius, but devel-
opers are free to choose a scaling that meets their pref-
erences. A logarithmic or square-root scaling is, how-
ever, recommended, as this allows to recognize differ-
ences between classes with comparably few individu-
als, while at the same time limiting the maximum size
of the class nodes.

If information about individuals is not available
or considered in the visualization, the circles of all
common classes have the same predefined size. An
exception are the circles of classes that represent
owl:Thing: They are shown in a smaller size, as
they usually do not carry relevant domain information
(cf. Figure 1). Even though all individuals in an on-
tology are instances of owl : Thing according to the
OWL specification [20], this is irrelevant for the visu-
alization so that owl : Thing has always a fixed size.

Most connecting lines in VOWL have an arrowhead
that points to the class or datatype that is defined as
the range of the property represented by the line. If
no domain and/or range axiom is defined for a prop-
erty, owl:Thing is used as domain and/or range.
An exception are datatype properties without a defined
range, where rdfs:Literal is used as range in-
stead.

Lines of inverse properties have arrowheads at both
ends, and the direction of the respective property is
highlighted when hovering over the label (or when se-
lecting it in touch contexts). Subproperty axioms are
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Table 2
Excerpt of the VOWL color scheme

Name Color  Application

General classes, object properties, disjointness
External - external classes and properties
Deprecated deprecated classes and properties
Datatype datatypes, literals

Datatype property datatype properties

Highlighting - circles, rectangles, lines, borders, arrows

also indicated by interactive highlighting instead of ex-
plicit connections between the property labels (as in
an earlier version of VOWL) to reduce the number of
edge crossings and to facilitate the implementation of
VOWL.

Rectangles representing property labels have no
border to distinguish them from those representing
datatypes. The labels depict the text for the element
given with rdfs: label in the language selected by
the user. If no label is set for an element, the last part
of the IRI is taken, i.e., the string that follows the last
slash (/) or hash (#) character. Long labels are abbre-
viated, but the full text is always available on demand
(e.g., displayed in a tooltip and/or a sidebar).

3.1.2. Color Scheme

VOWL defines a color scheme for a better distinc-
tion of the different elements (cf. excerpt in Table 2).
The colors are specified by their function in an abstract
way and relative to the canvas color to leave room for
customization. Although concrete color codes are rec-
ommended, developers may choose different colors as
long as they comply with the abstract descriptions pro-
vided in the VOWL specification.

The color scheme also specifies how the colors
should relate to each other in order to encode the
VOWL semantics. For example, the external color is
defined to be a “dark version of the general color”, and
the datatype color is described as a “light color that
is clearly different from the other colors”. Where sev-
eral of the color mappings may apply, priority rules
are specified. One example for such a rule is that the
deprecated color has priority over the external color, as
the deprecation information is considered to be more
important in most cases.

The recommended color scheme has been designed
in accordance with the descriptions: For instance, and
in line with the above example, the recommended ex-
ternal color (dark blue) is similar to the general color
(light blue), whereas the color for datatype properties

(light green) is clearly different. In other cases, estab-
lished associations have been reused, such as the color
gray indicating deactivation (and deprecation) or red
as a very visible signal color for the highlighting.

However, colors are not required in order to use
VOWL visualizations—they are also comprehensible
when printed in black and white or viewed by color-
blind people. Details that rely on color, such as the sub-
tle distinction of owl :Class and rdfs:Class, can
either be neglected or may alternatively be added as
text information in these cases. While the notations of
object and datatype properties also differ only in color,
they can still be distinguished without colors, as object
properties usually point to classes and datatype proper-
ties to datatypes. Other information is provided as text,
so that it remains available in the absence of colors.

The text labels also help to make the visualiza-
tion more self-explanatory, as we found in a user
study [68]. Accordingly, apart from the priority rules
for colors, the VOWL specification includes rules on
how to combine multiple text labels. In most cases,
they are simply displayed as a comma-separated list
(e.g., “deprecated, external”).

3.2. Visual Elements

VOWL defines visual elements for most language
constructs of OWL, including those of RDF and RDFS
reused in OWL. The representations are based on
the graphical primitives and color scheme introduced
above; a selection is shown in Figure 2.

As already mentioned, redundancy is deliberately
introduced in some cases. One such example is the vi-
sual element for external classes, which we call classes
whose base IRI differs from that of the visualized on-
tology. It has both the external color, as defined by the
color scheme, and the hint “external” beneath its la-
bel. Other examples are the visual elements for class
disjointness and logical disjunction that complement
the mathematical symbol or text label with illustrations
reminiscent of Venn diagrams. These illustrations help
to communicate the underlying set operations to users
who are not familiar with the mathematical symbols or
names of the concepts.

Some of the visual elements were inspired by UML
class diagrams, such as the notation for cardinality
constraints or for subclass relations, with the latter be-
ing similar to the generalization and realization nota-
tions of UML. The representations of these elements
were considered intuitive by most participants of a
user study, in which we compared an earlier version
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Fig. 2. Selection of visual elements from the VOWL specification.

of VOWL to the UML-based visualization of ontolo-
gies [75].

It is important to note that some OWL elements are
merged in the visualization. One example are equiva-
lent classes, which are visually indicated by one circle
with a double circle border in the graphical represen-
tation. The idea behind this merging is that equivalent
classes share the same properties, among others, and
can therefore be represented by only a single element

in the visualization. The labels of merged elements are
shown in brackets so that they are still available to the
viewer.

The graphical representations of further OWL el-
ements are defined in the VOWL specification [77].
Most of the remaining representations are variations of
the ones presented in Figure 2 and visualize specific
property characteristics (e.g., functional, transitive) or
other set operators (e.g., intersection, complement).

3.3. Graph Visualization

The visual elements are combined to a graph that
represents the entire ontology (or a particular part of
interest). By default, VOWL graphs are visualized in
a force-directed layout. Such a layout tends to arrange
the nodes in a way that highly connected classes are
placed more to the center of the visualization, whereas
less connected ones are placed rather in the periphery.
Thus, the force-directed layout helps to reflect the rel-
ative importance of the classes in the resulting graph
visualization, as the number of connections of a class
is often an indication of its importance in the ontol-
ogy [84]. Moreover, graph layouts created with force-
directed algorithms are perceived to be aesthetically
pleasant, since all edges have roughly the same length
and since they tend to avoid edge crossings, which in-
creases the readability of the visualization [5].

In the same spirit as some elements are merged in
VOWL, others are multiplied so that they may appear
more than once in the graph. This helps to relax the
energy of the force-directed layout and reduces the vi-
sual prominence of generic ontology concepts. Multi-
plication is based on the aforementioned splitting rules
that determine whether there is no multiplication for
elements, multiplication for each connected class, or
multiplication across the entire graph. For instance,
the generic class owl : Thing is multiplied in a way
that it is added once for every class it is connected to,
whereas datatype nodes appear once for every datatype
property (cf. Figure 1).

While the multiplication increases the number of
nodes, it does not affect the number of edges which
remains constant. However, as the force-directed lay-
out tends to place the multiplied nodes in the neighbor-
hood of the nodes they are connected to, the multipli-
cation helps to avoid overly long edges and edge cross-
ings that would have a negative impact on the readabil-
ity of the visualization.
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Fig. 3. The user interface of Protégé VOWL consists of the ontology visualization, a sidebar, and a control panel.

4. Implementations of VOWL

VOWL has been implemented in two different
tools so far that demonstrate its applicability: Pro-
tégéVOWL has been realized as a Java-based plugin
for the Desktop version of the ontology editor Pro-
tégé [92], whereas WebVOWL is a standalone appli-
cation based on open web technologies. Both tools are
released under the MIT license and are publicly avail-
able at http://vowl.visualdataweb.org. A
demonstration of ProtégéVOWL was first shown at
ESWC 2014 [67], while WebVOWL was first demon-
strated at EKAW 2014 [66].

4.1. ProtégéVOWL: VOWL Plugin for Protégé

In accordance with VOWL, Protégé VOWL focuses
on the visualization of the ontology schema, i.e., the
classes, properties, and datatypes (TBox), while it does
not consider individuals and data values (ABox infor-
mation) for the time being. It is deployed as a JAR file
that needs to be copied to the plugins folder of the Pro-
tégé installation, and is compatible with version 4 or
higher of Protégé.

Figure 3 shows a screenshot of Protégé VOWL de-
picting version 1.35 of the SIOC Core Ontology [8].
The user interface consists of three parts: The VOWL

Viewer containing the ontology visualization, the
VOWL Sidebar listing details about the selected ele-
ment, and the VOWL Controls allowing to adapt and
pause the force-directed graph layout.

4.1.1. VOWL Viewer

Protégé VOWL makes use of the visualization toolkit
Prefuse [43] to render the visual elements and to ar-
range them in a force-directed graph layout. It accesses
the ontology representation provided by the OWL API
of Protégé and transforms it into the data model re-
quired by Prefuse. The OWL elements are mapped to
the graphical representations as specified by VOWL
and combined to a graph.

Prefuse uses a physics simulation to generate the
force-directed graph layout consisting of three differ-
ent forces: Edges act as springs, while nodes repel each
other, and drag forces ensure that nodes settle. The
forces are iteratively applied, resulting in an animation
that dynamically positions the nodes [43].

Users can zoom into the visualization to explore cer-
tain ontology parts in detail or zoom out to analyze
the global structure of the ontology. They can pan the
background and move elements around via drag and
drop to optimize the graph visualization and adapt it
to their needs. Whenever a node is dragged, the rest
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of the nodes are repositioned with animated transitions
by the force-directed algorithm (if not paused).

4.1.2. VOWL Sidebar

If an element is selected in the visualization, details
about it are shown in the sidebar, such as for the se-
lected class “User Account” in Figure 3. These details
are provided by the OWL API and include the type
and IRI of the element as well as ontology comments,
among others. IRIs are displayed as hyperlinks that can
be opened with a web browser or other tools for further
exploration.

4.1.3. VOWL Controls

The spring forces are separately adaptable for class
and datatype nodes with the two sliders in the control
panel. This allows to fine-tune the force-directed lay-
out in accordance with the size and structure of the vi-
sualized ontology. For instance, datatypes can be posi-
tioned in close proximity to the classes they are con-
nected with in order to visually group these elements.

Finally, the force-directed algorithm can be paused
via the control panel. This does not only reduce the
load of the processor but also allows to rearrange el-
ements without an immediate update of the force-
directed layout.

However, the current version of Protégé VOWL
does not implement all visual elements defined in the
VOWL specification. A more complete implementa-
tion of VOWL is provided by WebVOWL that is de-
scribed in the following.

4.2. WebVOWL: Web Implementation of VOWL

Implementing visualizations as plugins for ontology
editors like Protégé has the advantage that one does
not have to deal with ontology processing. The parsing
of the ontology files and their transformation into an
efficient data structure is done by the ontology editor,
or the library that is used for this purpose, such as the
OWL API [50] in case of Protégé 4 and 5.

This is different in WebVOWL, which is not a plu-
gin like Protégé VOWL but a standalone application.
Instead of being tied to a particular OWL parser, We-
bVOWL defines a JSON schema that ontologies need
to be converted into. This makes WebVOWL indepen-
dent from a particular OWL parser and, in principle,
broadly applicable. However, since the OWL API is
currently the reference implementation for creating,
manipulating, and serializing OWL, we also use it for
ontology processing in relation with WebVOWL at the
moment.

4.2.1. Ontology Processing

The JSON schema has been designed with regard to
VOWL, i.e., its structure differs from common OWL
serializations in order to enable an efficient generation
of the graph visualization. Due to this fact, it is also
different from other JSON schemas that emerged in the
context of the Semantic Web, such as RDF/JSON [19]
or JSON-LD [90].

The VOWL-JSON file contains the classes, prop-
erties, and datatypes of the ontology along with
corresponding type information (owl:Class,
owl:0bjectProperty, xsd:dateTime, etc.).
Additional characteristics (inverse, functional, dep-
recated, etc.) as well as annotations (ontology title,
version, etc.) and optional ontology metrics (number
of classes, properties, etc.) are separately listed. If
a VOWL-JSON file does not contain any ontology
metrics, they are computed by WebVOWL at runtime.
In case an ontology defines individuals, these are
listed inside the classes they are members of in the
VOWL-JSON file.

Even though WebVOWL is implemented in Java-
Script, the transformation of the OWL ontology into
the required JSON structure can also be realized with
other programming languages. By default, WebVOWL
is deployed with a Java-based OWL2VOWL converter
that utilizes the aforementioned OWL API [50]. As
mentioned before, the converter accesses the ontology
representation provided by the OWL API and trans-
forms it into the JSON format required by WebVOWL.

4.2.2. User Interface and Visualization

Figure 4 shows a screenshot of WebVOWL (ver-
sion 0.4.0) visualizing the Personas Ontology (ver-
sion 1.5) [73,74]. The general user interface of Web-
VOWL is similar to that of Protégé VOWL, consisting
of the ontology visualization in the main view, a side-
bar listing details, and a menu containing controls, fil-
ters, and modes.

The SVG visualization is generated from the JSON
file at runtime. WebVOWL renders the graphical el-
ements according to the VOWL specification, i.e., it
uses the SVG code and CSS styling information pro-
vided by the specification. The force-directed graph
layout is realized with the JavaScript library D3 [10].
It is based on a physics simulation similar to the one
of Prefuse used in Protégé VOWL (cf. Section 4.1.1).
The forces cool down in each iteration and the force-
directed algorithm stops automatically after some time
to remove load from the processor and provide a sta-
ble visualization. The algorithm is triggered again each
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Fig. 4. WebVOWL has a similar user interface as Protégé VOWL, consisting of the ontology visualization, a sidebar, and a menu with controls.

time the user changes the graph layout, as long as the
algorithm has not been paused via the menu.

Users can interact with the visualization in a simi-
lar fashion as in Protégé VOWL. They can zoom in and
out, pan the background, and move elements around to
adapt the force-directed layout. Certain elements (e.g.,
subproperties and inverse properties) are interactively
highlighted according to the VOWL specification. De-
tails about selected elements are once again listed in
the sidebar (along with hyperlinks, whenever IRIs are
available), such as for the selected class “AffectiveS-
tate” in Figure 4.

Furthermore, the sidebar displays metadata about
the visualized ontology, such as its title, namespace,
author(s), and version, as well as a description text (if
provided) and the aforementioned metrics contained in
the JSON file or computed at runtime. It also lists an-
notations and custom properties that are not shown in
the visualization. All this information is grouped and
displayed in an accordion widget to save screen space.

The language of the text labels in the visualization
and sidebar can be changed in case of multilingual
ontologies. All available languages are provided in a
dropdown list from which the user can choose one.

Moreover, and in contrast to Protégé VOWL, Web-
VOWL considers individuals if contained in the visu-
alized ontology. In accordance with the VOWL spec-

ification, the size of the circles indicates the number
of individuals that are instances of the respective class.
When a class is selected by the user, the corresponding
individuals are listed in the sidebar, with their IRIs as
hyperlinks.

4.2.3. Controls and Modes

Like ProtégéVOWL, WebVOWL comes with two
gravity sliders that allow to adapt the forces of class
and datatype nodes, respectively. It also provides a
pause button to suspend the automatic layout in favor
of a manual positioning of the nodes.

In addition, WebVOWL implements some features
that extend the ones provided by Protégé VOWL. One
such feature is a special pick-and-pin mode inspired by
the RelFinder user interface [65]: It allows to decouple
selected nodes from the force-directed layout and fix
them at freely chosen positions on the canvas. Pinned
nodes are indicated by a needle symbol (cf. classes
“Persona” and “PersonaType” in Figure 4) that can be
removed to release the nodes and reintegrate them into
the force-directed layout.

Another mode allows to deactivate the node scaling,
so that the number of individuals per class is no longer
visually indicated by the size of the circles. A third
mode switches to a more compact notation, where
some of the redundant information coding is removed
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from the visualization, such as the text labels that in-
dicate subclass relations or external and deprecated
classes. While these text labels are useful for people
who are exposed to VOWL for the first time, they are
no longer required by users familiar with VOWL, as
the information can also be derived from the line style
or color of the elements.

4.2.4. Filters

WebVOWL provides a number of filters that help to
reduce the size of the VOWL graph in order to focus
on certain aspects and to increase its visual scalability.
By default, disjointness information is not shown in
the visualization but only listed in the sidebar (cf. Fig-
ure 4). This is due to the fact that disjoint relations tend
to clutter the graph, without being of large interest to
the user. However, this filter can be deactivated at any
time if disjointness information should be included in
the VOWL graph.

Other filters remove datatype properties (along with
the datatypes they are pointing to) or set operators
(i.e., classes representing union, intersection, or com-
plement operations). The latter filter has, for instance,
been activated in the visualization of Figure 4 so that
set operators are not shown in the VOWL graph. There
is also a filter for solitary subclasses, a term we intro-
duced to refer to subclasses that are only connected to
their superclass but no other classes. We identified all
these elements as candidates that can be removed from
the VOWL visualization without destroying the overall
image of the ontology.

We consider it important to systematically remove
complete sets of elements from the VOWL graph in-
stead of using filters that remove only single elements
and are less predictable. An exception is the slider that
controls the degree of collapsing of the VOWL graph,
and that is provided as another filter in WebVOWL.
It removes classes from the graph based on their node
degree (not considering datatype properties), starting
with the classes having the lowest degree. This filtering
is based on the observation that classes with many ob-
ject properties are often central hubs within ontologies,
while classes with only few object properties are typ-
ically less important. It can be used to reduce the size
of VOWL visualizations of large ontologies by only
showing a selection of highly connected classes along
with their properties and hiding the rest.

Finally, WebVOWL allows to export the complete
or filtered VOWL visualization as SVG image that can
be opened in other programs, scaled without loss of
quality, edited, shared, and printed. Apart from that,

the native functionality of the web browser can be
used, for instance, to print the VOWL visualization or
to save it as a PDF file.

4.2.5. Discussion of WebVOWL

WebVOWL is one of the first tools for ontology vi-
sualization that is completely implemented with open
web technologies on the client side. It works in all ma-
jor browsers, except for the current version of Internet
Explorer (version 11), which lacks support for some
SVG features. However, cross-browser compatibility
is an issue of any application based on open web stan-
dards and a general drawback compared to Java-based
tools like Protégé VOWL.

Most of the ontology visualizations reviewed in Sec-
tion 2 are implemented in Java. Exceptions are the
tools BioMixer [30] and OLSVis [98], which also use
open web technologies. However, they are less generic
than WebVOWL but oriented towards the biomedi-
cal domain and integrated in a corresponding toolsets.
Their visualizations are also less detailed and show
only parts of ontologies or mappings across several on-
tologies rather than complete ontology overviews.

Other visualization tools that run in the web browser,
such as FlexViz [26] or OOBIAN Insight [69], use
technologies like Adobe Flash or Microsoft Silverlight
that require proprietary browser plugins. While the
tool LodLive [14] is also based on open web technolo-
gies, it focuses on the visual exploration of Linked
Data and not on the visualization of ontologies, as we
discussed in Section 2.

Moreover, WebVOWL has been designed with dif-
ferent interaction contexts in mind, including settings
using touch interfaces. For instance, zooming can ei-
ther be performed with the mouse wheel, a double
click/tap, or two fingers zooming gestures. As some
features may not be available in all interaction contexts
(e.g., mouseover effects), we took care that they are
not crucial for the interaction and understanding or are
differently realized in those contexts.

An instance of WebVOWL is publicly available at
http://vowl.visualdataweb.org. It allows
users to load custom ontologies and to interactively
explore the resulting VOWL visualizations. It demon-
strates the usefulness of WebVOWL especially for ca-
sual ontology users who do not want to install an on-
tology editor or related tool on their machine in order
to visualize some ontology of interest.
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5. Evaluations of VOWL

We conducted several user studies to evaluate the
comprehensibility and usability of VOWL, and tested
its visual scope and completeness with a benchmark
ontology. This section reports on the different evalua-
tions.

5.1. Comparative Evaluations with Lay Users

We have compared VOWL to other ontology visu-
alizations in three qualitative user studies [67,68,75].
None of the participants in these studies had exten-
sive prior knowledge about ontologies and the Seman-
tic Web, so they could be regarded as either lay users
or casual ontology users.

All studies started with a brief explanation of the
examined notations and underlying ontology concepts.
We then presented various ontologies displayed with
VOWL and other ontology visualizations that VOWL
was compared to. All studies had a counterbalanced
within-subject design so that the participants could di-
rectly compare the different visualization approaches.

We asked questions about the ontologies, which had
to be solved by looking at the visualizations. Among
those questions, some referred to the general structure
of the visualized ontologies (e.g., “What is the approx-
imate number of visible classes?”’), while others fo-
cused on particular ontology elements (e.g., “Which
property is the inverse of property X?’). Moreover, we
asked the participants for comments on the visualiza-
tions, considering aspects such as general overview,
choice of shapes and colors, the level of comprehensi-
bility or confusion when looking at the visualization,
perceived completeness of the displayed information,
and suggestions for improvement.

Ontology visualizations that aim to provide an
overview of the ontology structure and approximate
OWL feature completeness typically follow a node-
link diagram approach (cf. Section 2). Hence, the
OWL visualizations we compared VOWL to were
based on some kind of node-link diagram: In the
first user study [75], we compared an early version
of VOWL to the visualization of OWL using UML
class diagrams. The second study [67] focused on Pro-
tégé VOWL and compared it to SOVA [7], another vi-
sualization plugin for Protégé. The SOVA plugin also
served as a reference in the third user study, next to the
GrOWL visualization [59], but this time we used the
WebVOWL implementation of VOWL for the compar-
ative evaluation [68].

Overall, participants considered all presented visu-
alizations comprehensible. The inherent possibility to
visually distinguish basic elements, such as properties
and classes, was stated to be important, and a small
number of crossing edges was confirmed to support the
overview.

Short descriptive labels on elements, as they were
included in VOWL, were generally seen as helpful. In
the case of special property characteristics and mod-
ifiers, such as functional or transitive, the unabbrevi-
ated textual description was considered indispensable
to easily interpret the visualizations.

The aggregation and multiplication of nodes, as
featured in VOWL, was met with mixed reactions.
Remembering the explanations on the visual nota-
tion, some of the participants quickly understood that
generic elements, such as owl : Thing, would appear
several times, and that groups of equivalent classes
were merged into a single node. Others had expected
a different behavior—only one representation of the
unique class owl : Thing and one separate node per
equivalent class—and thus required a moment to ad-
just to the visualization.

The study participants welcomed the continuous
zoom, but asked for additional highlighting features
(e.g., an indication of all nodes that are directly linked
to the selected one) as well as a feature to search and
highlight specific elements. Even though the search
functionality of the web browser can be used for the
latter purpose in case of WebVOWL, participants re-
garded this as too restrictive.

In summary, the lay users in the three comparative
studies could solve most tasks well with VOWL. When
a preference for one of the visualizations had to be
stated, it leaned toward VOWL for the majority of par-
ticipants, based on aspects such as clarity and distin-
guishability of elements, ease of use with interactive
layouting and highlighting features, as well as aesthet-
ics. The interested reader can find more details on the
reported user studies in [67,68,75].

5.2. Interviews with Experienced Ontology Users

To gain additional insight into how users perceive
VOWL, and to become more aware of the differences
between lay users and experienced ontology users, we
have also evaluated VOWL with users who had already
worked with ontology editors and formal OWL syntax.
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5.2.1. Participants

We recruited five users experienced with ontolo-
gies for this evaluation. Their expertise varied between
knowing the major OWL features from working with
existing ontologies and being very familiar with the
specifics of OWL and able to define custom ontology
elements. Four of the participants had some prior ex-
perience with editing ontologies in Protégé.

We chose this type of participants to contrast their
statements with the findings from the aforementioned
user studies (cf. Section 5.1). Moreover, we wanted to
identify requirements that would not become apparent
to users who have never worked (or are just starting to
work) with ontologies.

5.2.2. Materials and Equipment

WebVOWL (version 0.2.11) was executed in a
Mozilla Firefox browser (version 32) for the interview.
It was initially showing the FOAF vocabulary [11],
while three other ontology visualizations were avail-
able from the menu (SIOC [8], MUTO [63], and Per-
sonasOnto [73]). In addition, the VOWL specifica-
tion [77] was opened in another tab of the web browser,
and ProtégéVOWL (cf. Section 4.1) was running in
Protégé 4.3.0 on the same computer, initially showing
one of the four aforementioned ontologies.

A number of questions were prepared to provide
some rough guidance through the features of VOWL
and to ensure touching upon a wide range of visualiza-
tion aspects. Some of the questions explicitly referred
to the visualization (e.g., “Are any displayed visual el-
ements inherently unclear? Is any further information
needed to understand them?”), while others dealt with
interactive features (e.g., “Are links between elements
expressed sufficiently clearly by the interactive high-
lighting?”’). Furthermore, some final questions were
related to the degree of information obtainable with
VOWL (e.g., “What information is missing?”’). These
questions were printed on paper and remained with the
conductor of the interview.

5.2.3. Procedure

All interviews were conducted by the same person
in a quiet room. One of the five participants attended
alone, while the other four took part in groups of two.
This helped to stimulate discussions between the par-
ticipants while they were using the visualization. Par-
ticipants were asked to “think aloud” and to describe
both what they were seeing and what they would like
to do or find when exploring the visualization.

To ensure that all participants started out the same,
they were provided with a short introduction explain-

ing that both WebVOWL and Protégé VOWL display
one ontology at a time, and that all elements are de-
fined in a specification document. However, in contrast
to the previous user studies, no systematic introduc-
tion to the VOWL notation was given this time. We
wanted the participants to explore and familiarize with
VOWL on their own, without any prior knowledge of
the meaning of shapes, colors, and symbols.

At the same time, we wanted to make sure that the
participants would come across all key elements and
features of VOWL. Therefore, we basically allowed
free exploration, but occasionally resorted to ask some
of the prepared questions when we found the partic-
ipants did not have an idea for a particular action on
their own. For example, when the participants had not
noticed the multiplication of datatypes by themselves
after a while, the interviewer would read out the text
“Can you find datatype X? How often does it appear in
the visualization? Do you consider this appropriate?”
to give participants an incentive to think about the re-
spective feature. Explanations for elements and fea-
tures were provided upon request, unless participants
could figure out the meaning themselves.

5.2.4. Results

Overall, the results showed that the participants had
no problems in understanding the general VOWL vi-
sualizations and distinguishing classes, properties, and
datatypes. Three of the participants instantly identi-
fied these ontology elements, while the other two could
quickly associate the concepts with their visual repre-
sentations, as well. Detailed results are presented in the
following.

Layout and Navigation All study participants spoke
favorably about the force-directed layout, as it helped
them to easily recognize clusters and inheritance struc-
tures given in the ontologies. They stated that highly
connected elements could easily be recognized due to
the layout, and that the gravity options, which control
how strongly nodes are attracted to each other, were
beneficial for improving the readability of the visual-
izations.

The pick-and-pin feature was thought of as useful.
However, several participants could imagine further
automatic layouts besides the force-directed one (e.g.,
hierarchical layouts) and an ability to focus single ele-
ments that the remaining elements should align around
(i.e., some kind of pivot navigation). One participant
suggested the addition of a minimap to ease the navi-
gation in large ontologies.
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Node Multiplication The multiplication of nodes was
considered beneficial for the simplicity of the graph
structure and the layout of the visualization. Only one
participant did not see the multiplication of datatypes
as desirable, though he was not confused by it either.

One type of questions that could not immediately
be answered due to the multiplication of the datatypes
was “What datatype properties with range X exist in
the ontology?” (because a datatype X may be repre-
sented by several nodes, connections to which can thus
not be counted at a single glance). Most participants
agreed that they would normally not want to extract
such information anyway.

Equivalent Classes The meaning of double-ringed
classes as groups of merged equivalent classes was not
immediately clear to any of the participants. Once the
meaning had been explained, most participants consid-
ered the visual representation appropriate. However,
one participant wondered why one of the equivalent
class names is presented in a larger font and therefore
more prominent than the others.

Contrary to the studies with lay users (Section 5.1),
all participants were content with the merging of
equivalent classes into a single visual element. Yet, one
participant remarked that for editing and determining
the provenance of property definitions, the equivalent
class nodes might optionally have to be splittable.

Properties In general, object and datatype proper-
ties were instantly found and recognized for what they
were. Three participants asked for options to hide
either property labels (thus only showing unlabeled
property edges) or datatype nodes (thus showing la-
beled datatype properties without range information),
as they deemed that information to be relevant only
in certain situations. This reiterates the wish expressed
by some of the lay users from the previous studies to
optionally hide some textual information.

Inverse properties were correctly identified by most
participants. One of them explicitly praised the way
how pairs of inverse properties were displayed as bidi-
rectional links with arrows at both sides. However, the
participants generally had to be pointed to the interac-
tive highlighting feature that indicates which property
is associated with which direction. Likewise, the high-
lighting of subproperties was not noticed unless explic-
itly pointed out. With that explanation, however, the vi-
sual representation was comprehensible to participants
who had experience with the concept of subproperties.

Set Operators The participants were not sure whether
they could recognize the visual notation for classes
based upon set operations (union, intersection, and
complement) on their own. Three of them quickly fig-
ured out the meaning because of the mathematical
symbols (U, N, —), but did not notice the Venn dia-
grams at first. Two participants thought the combina-
tion of the dashed node border, the Venn diagrams, and
the logical symbols is a visual overload that should be
tackled. Another one remarked that the notation would
be more consistent with the rest of VOWL if the sym-
bols were replaced by text labels.

Filtering Several participants asked for additional
ways of filtering elements in the graph. For instance,
one participant could imagine advanced filter crite-
ria, such as ranges of properties to hide the respective
property edges, while two others thought an option for
selectively collapsing and expanding subtrees or sub-
graphs was missing. The possibilities to hide datatype
properties and weakly connected subclasses included
in WebVOWL version 0.2.11 were considered promis-
ing steps in this direction.

Colors Most colors were not commented on a lot.
Two participants stated the color coding was not clear
to them, especially with respect to external classes.
One of them pointed out that the dark color of external
elements visually emphasizes these elements, while he
did not see a particular reason why external classes
should call for attention. Two participants would have
wished for colors that express the class hierarchy in
some way, such as the specialization level in the inher-
itance tree, though they admitted that such a color cod-
ing would probably only be conceivable for strictly hi-
erarchical inheritance structures rather than the inheri-
tance structures possible with OWL.

Completeness When asked whether VOWL lacks
any information, three participants answered that the
amount of information currently displayed is almost
too much, for which some overlapping labels were
given as proof. Participants agreed that disjoint rela-
tionships between classes should not be displayed by
default but only in cases where disjointness is of partic-
ular interest, as it is recommended and implemented.
One participant would have preferred some more
explicit information in the sidebar of WebVOWL, such
as an indication of namespaces along with the labels.
The same participant also asked for a way to display
other class restrictions that are currently not supported
by VOWL, such as restricting the instances of a class
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to a specific set of individuals. Beside these omissions,
the visualization was stated to be “quite complete” in
terms of OWL features considered relevant by the par-
ticipants.

Application Areas Finally, the interview participants
were asked how they could imagine to use VOWL.
All participants agreed with the basic idea of find-
ing out about the structure and content of an ontol-
ogy, and some mentioned techniques such as navigat-
ing through an ontology by starting with some core el-
ements. One participant could imagine using VOWL
to align several ontologies.

Usage for ontology engineering and editing tasks,
such as adding, modifying, or removing ontology el-
ements, was suggested by all participants, which also
included using VOWL for debugging purposes. One
participant mentioned that VOWL could be helpful in
teaching contexts, such as lectures on the Semantic
Web, in order to explain OWL concepts to learners.

5.3. Benchmark Test of the VOWL Visualization

VOWL has additionally been tested with OntoViBe,
the Ontology Visualization Benchmark [37], available
at http://ontovibe.visualdataweb.org.
OntoViBe provides an ontology comprising of a com-
prehensive set of OWL 2 [101] language constructs
and systematic combinations thereof. It has been de-
signed to support the testing of feature completeness
of ontology visualizations. The elements in OntoViBe
are named in a self-descriptive manner to allow for an
easier interpretation and analysis.

Figure 5 shows the VOWL visualization of ver-
sion 2.1 of OntoViBe [38]. It has been created with
WebVOWL (version 0.4.0), which provides a com-
plete implementation of VOWL 2 in contrast to Pro-
tégéVOWL. We have annotated the visualization to
point to some aspects discussed in the following.

Looking at the VOWL visualization of OntoViBe,
some effects of the force-directed layout are notice-
able right away. A strongly connected class (“Proper-
tyOwner”) appears to be very central to the ontology,
due to the large number of nodes it is connected to (an-
notation (D) in Figure 5). The convenient radial place-
ment of outbound and inbound edges, which mostly
avoids overlapping arrowheads, is immediately visi-
ble. Other graphical features that can directly be seen
are the merging of equivalent classes into single nodes
(also visible in annotation (D), and the use of human-
readable labels, where available.

OntoVibe includes a small class hierarchy that is
clearly arranged in the VOWL visualization (annota-
tion (2)). One of the classes in the hierarchy (“Multi-
Subclass”) has a larger size than the others, as it con-
tains individuals. The exact number of individuals that
are members of this class is displayed beneath the class
name (in this case “4”). Moreover, the class hierarchy
(in annotation (2)) contains further equivalent classes
merged into a single node (“Subclass”) and a dep-
recated class that is imported from another ontology
(“DeprecatedImportedClass™).

The latter class is an example of how possible con-
flicts with regard to the visualization are resolved by
VOWL. Usually, external elements are visualized with
a dark blue background, such as the imported class in
Figure 5 (cf. annotation (3)). However, as the depre-
cated color overrides the external color according to
the priority rules of VOWL, the “DeprecatedImport-
edClass” (in annotation Q) has a gray background in-
stead of a blue one. The deprecated color also over-
rides the standard colors of object and datatype prop-
erties (see annotation @ for an example).

Another kind of avoided conflict concerns the ge-
ometry, as multiple properties between the same pair
of classes do not visually obstruct one another but are
rendered as curved multi-edges (also visible in anno-
tation @). The same applies to sets of cyclic proper-
ties whose domain and range axioms point to the same
class (annotation (3)).

Cardinality constraints are correctly combined and
depicted in the VOWL visualization: Annotation 6
shows an exact cardinality, and annotation @ a min-
imum cardinality; in annotation (D), a range of car-
dinalities is shown that has been composed from the
minimum and maximum cardinality expressions de-
fined for that class and property. Also, global cardi-
nality constraints as well as logical property charac-
teristics are depicted (cf. indications “functional”, “in-
verse functional”, and “symmetric” in annotation @).
Equivalent properties are correctly merged in the
VOWL visualization too (annotations @) and @).

Moreover, the visualization reveals that some parts
of OntoViBe are only little connected. There are sev-
eral classes that are not linked to any other class,
and two separate subgraph structures that are easy to
spot (annotations (7) and ®)). While all OWL classes
are subclasses of owl : Thing according to the OWL
specification [20], and therefore implicitly connected,
these implicit connections are not shown in VOWL, as
they would clutter the visualization without any benefit
for the interpretation of the ontology.
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Fig. 5. Benchmark ontology (OntoViBe 2 [38]) visualized with VOWL. The annotations have been added to indicate aspects of interest that are
referred to in the paper. They are not part of the actual VOWL visualization.
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Note that the layout of the VOWL graph has been
manually adapted for Figure 5 in order to fit well into
the available space. In particular, the distances of un-
connected nodes have been reduced to get a more com-
pact visualization. Normally, the disconnected ontol-
ogy parts would tend to drift away from the central
ontology part due to the force-directed layout, which
makes them even easier to spot.

The visualization of custom data ranges is not prop-
erly supported for the time being, as VOWL mainly fo-
cuses on classes and property relations. This is seen by
nodes that display only the names of the data ranges
but no more information, such as the node with the
label “Divisi...” (for “DivisibleByFiveEnumeration”,
annotation ®). This data range is additionally rep-
resented by a class that is linked with set operators
representing other datatypes of OntoViBe, as can be
seen in annotation (8) which contains a corresponding
class with the label “DivisibleByFi...” (for “Divisible-
ByFiveEnumeration™).

Besides the lack of support for custom data ranges,
only two omissions in the current VOWL syntax be-
come apparent that might be crucial for the interpre-
tation of some ontologies: On the one hand, unions,
intersections, and complements of classes have only
been specified for anonymous classes in VOWL. So
far, no notation for named classes that are defined by
these set operations exists.

On the other hand, in the case of set operation
classes that refer to other set operation classes, the
nesting direction is not yet displayed in VOWL: A
union including an intersection and an intersection in-
cluding a union look the same and can hence not be
immediately distinguished in the visualization (cf. an-
notation (9). This can be even more irritating if a com-
plement class is involved, such as in annotation (9.

Apart from these minor issues that can be addressed
in a future iteration of the visual notation, VOWL pro-
vides a complete and correct representation of the On-
toViBe ontology. Therefore, the notation can be ex-
pected to consistently visualize also a wide variety of
other ontologies.

6. Conclusion and Future Work

The main goal of VOWL is to provide a compre-
hensive yet comprehensible visual language for the
representation of OWL ontologies. This article de-
scribed the key considerations, features, and capabili-
ties of VOWL, as well as two implementations: a plu-

gin for the widely used ontology editor Protégé and
a responsive web application. Both implementations
demonstrate the applicability and usability of VOWL
by means of several ontologies. The comprehensibil-
ity of VOWL has been confirmed by a number of user
studies conducted with different user groups, while
its visual expressiveness and completeness have been
tested with a benchmark ontology.

The ontologies used in the evaluations of VOWL
were of relatively moderate size. However, there is no
upper limit for the size of ontologies. On the other
hand, graph visualizations are only viable up to a cer-
tain size, at which the overview is lost and the graph
is no longer easily usable. The visualization of large-
scale ontologies with VOWL is an issue that has not
yet been sufficiently addressed.

We have done first steps by designing interactive
features to filter elements and reduce the overall graph
size. Future solutions might consider both automatic
and manual methods to detect ontology components
that carry context-specific importance, so that parts of
the visualization can be hidden or bundled where ap-
propriate. In addition, clever strategies from the field of
graph visualization may be incorporated into VOWL
to improve the visualization of large ontologies. How-
ever, this is a general issue that does not only affect
VOWL but most graph visualizations of ontologies.

A related issue is the fact that ontology elements
have no inherent spatial information. Therefore, all el-
ements are initially placed in a random manner in the
force-directed layout. While this does not influence a
single session of work, it prevents users from creating
a “mental map” of the visualization that remains con-
stant for several sessions, since the elements are placed
at different locations every time the VOWL graph is
rendered. Future work will have to develop reasonable
guidelines on how to best place ontology elements so
their positioning follows a reproducible pattern. In ad-
dition, implementations of VOWL may provide op-
tions to save customized VOWL visualizations and al-
low to reopen them with exactly the same layout and
visual settings at a later point in time.

Future work will also be concerned with incorpo-
rating the remaining OWL language constructs into
VOWL. Although VOWL already considers a large
portion of the language constructs, it is not yet com-
plete, in particular with regard to OWL 2. Therefore,
we plan to further extend VOWL to turn it into a visual
language that can represent OWL ontologies as com-
pletely as possible.
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Even though VOWL has been designed for OWL, it
might also be used to represent related languages and
models, as long as they can be converted into a VOWL-
compatible format (e.g., the VOWL-JSON format used
in WebVOWL). In particular, the WebVOWL imple-
mentation can be integrated well with other tools due
to its modular architecture and the separation of the
visualization from the rest of the user interface. For
instance, WebVOWL has already been integrated into
the tool PURO Modeler? and the Linked Open Vocab-
ularies (LOV) service’. There are also ongoing efforts
to integrate WebVOWL into WebProtégé* [97].

In related endeavours, we have looked into how
VOWL could be reused to support the visual querying
of Linked Data [39,40], to visualize text [18], or the
evolution of ontologies [13]. Apart from that, we hope
that VOWL and its implementations will be useful to
other researchers and developers and in related appli-
cation areas, such as ontology editing or alignment, as
well as in teaching and training contexts.
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