
Welcome to INFO216:
Knowledge Graphs

Spring 2023

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Session 7: Rules (SHACL and RDFS)
 Themes:

– why SHACL (SHapes Constraint Language)?
• node and property constraints

– why RDFS (RDF Schema)?
• utility properties
• classes and subclasses
• properties and subproperties
• entailments and axioms

– motivation for OWL (the Web Ontology Language)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Readings

• Sources:

– Allemang, Hendler & Gandon (2020):
Semantic Web for the Working Ontologist, 3rd edition:
chapters 7-8, but chapter 6-7 in the 2nd edition (no SHACL)

– Chapter 5: SHACL in Validating RDF (available online)
– Blumauer & Nagy (2020):

The Knowledge Graph Cookbook – Recipes that Work:
e.g., pages 101-106, 136-139 (supplementary)

• Resources in the wiki <http://wiki.uib.no/info216>:

– Interactive SHACL Playground

– W3C's RDF Schema 1.1 (sections 1-3 and 6)

– Shapes Constraint Language (SHACL) (Editor's Draft)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

SHACL

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

SHACL (SHapes Constraint Language)

• Constraining the structure of RDF (and RDFS, OWL...) graphs
– another W3C standard (from around 2018)

• Used to validate:
– open and other KGs we want to reuse
– graphs resulting from user input
– the KGs we make ourselves

• SHACL constraints are written in RDF
– a shapes graph is used to validate
– a data graph

• SHACL Core and several extensions
– we will focus on SHACL Core

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example KG (←S03)
• A knowledge graph of research literature related to

“Knowledge Graphs for the News”
– built to support a recent literature study
– 78 main papers with 291 authors
– 4086 other papers with 8990 authors
– 100s of topics and themes, >300k triples

• Accessible at http://bg.newsangler.uib.no/
– runs on a Blazegraph triple store
– Blazegraph’s simple web front end, read only

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example KG: graph structure (←S03)
Later in the course, we
will use RDFS and OWL

to represent and visualise
the structure of ontologies.

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example KG: resources (←S03)

(The URIs are simplified.)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper is the subject of

exactly one year property.
kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path kg:year ;

 sh:minCount 1 ;

 sh:maxCount 1

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper is the subject of

exactly one year property.
• Every year value (literal object) of

a main paper is an integer.

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path kg:year ;

 sh:minCount 1 ;

 sh:maxCount 1 ;

 sh:datatype xsd:integer

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper has at least one

contributor
kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:contributor ;

 sh:minCount 1

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper has at least one

contributor
– who is a main author

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:contributor ;

 sh:minCount 1 ;

 sh:class kg:MainAuthor

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper has at least one

contributor
– who is a main author
– and is represented by a URI

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:contributor ;

 sh:minCount 1 ;

 sh:class kg:MainAuthor ;

 sh:nodeKind sh:IRI

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper has at least one

subject
– whose value is a SKOS

concept (→S09)
which is represented by a URI

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:subject ;

 sh:minCount 1 ;

 sh:class skos:Concept ;

 sh:nodeKind sh:IRI ;

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Example constraints
• Every main paper has at least one

subject
– whose value is either

• a theme,
• a topic

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:subject ;

 sh:minCount 1 ;

 sh:or ([sh:class th:Theme]

 [sh:class ss:Topic]) ;

 sh:nodeKind sh:IRI ;

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

SHACL constraint structure
• SHACL constrains

– node shapes
– property shapes

• The node shapes can act as
collections of property shapes
belonging to the same class

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property [

 sh:path dcterm:subject ;

 sh:minCount 1 ;

 sh:or ([sh:class th:Theme]

 [sh:class ss:Topic]) ;

 sh:nodeKind sh:IRI ;

] .

SHACL constraint structure
• SHACL constrains

– node shapes
– property shapes

• The node shapes are mostly
collections of property shapes
pertaining to the same class

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property kg:SubjectShape .

kg:SubjectShape

 a sh:PropertyShape ;

 sh:path dcterm:subject ;

 sh:minCount 1 ;

 sh:or ([sh:class th:Theme]

 [sh:class ss:Topic]) ;

 sh:nodeKind sh:IRI .

SHACL constraint structure
• SHACL constrains

– node shapes
– property shapes

• The node shapes are mostly
collections of property shapes
pertaining to the same class

kg:MainPaperShape

 a sh:NodeShape ;

 sh:targetClass kg:MainPaper ;

 sh:property kg:SubjectShape .

kg:SubjectShape

 a sh:PropertyShape ;

 sh:path dcterm:subject ;

 sh:minCount 1 ;

 sh:or ([sh:class th:Theme]

 [sh:class ss:Topic]) ;

 sh:nodeKind sh:IRI .

 Almost the same, but now
 we can import shapes from
 other files and several node

 shapes can refer to the
 same property shape.

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Node shapes
• Node shapes specify constraints on focus nodes

– <node_shape_URI> a sh:NodeShape
– the focus nodes are often specified as sh:targetClass <class_URI>

• the node constraints apply to all instances of the target class
• alternatives: sh:targetNode, sh targetSubjectsOf, sh:targetObjectsOf

– constraints on each focus node itself:
• sh:class <class_URI> or: sh:datatype <datatype_URI>
• sh:in (...list of URIs/values...) or: sh:hasValue ...URI/value...
• sh:nodeKind can be one of

– sh:IRI, sh:BlankNode, sh:Literal, sh:IRIOrLiteral,
sh:BlankNodeOrIRI, sh:BlankNodeOrLiteral

– sh:pattern <regular_expression>

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Node shapes
• Node shapes specify constraints on focus nodes

– constraints on properties from the focus node
(with the focus node as subject):

• by shape URI:
sh:property <property_shape_URI>

• by anonymous node:
sh:property [
 a sh:PropertyShape ; # not necessary
 sh:path <property_URI> ;
 ... specific property constraints go here ...
] ;

Property shapes
• Property shapes specify constraints about the values that can be reached

from a focus node by some path
– <property_shape_URI> a sh:PropertyShape # usually implicit
– the property is often specified as sh:path <property_URI>

• alternatively, SPARQL-like property paths can be used
• the property constraints apply to:

– all uses of the property path from the focus nodes
– all values reached by the property path from the focus nodes

– property constraints:
• sh:minCount, sh:maxCount, ...

– node constraints about the property value (the object resource or literal):
• sh:class, sh:datatype, sh:nodeKind, sh:pattern, ...

Property paths in SPARQL and SHACL

SPARQL path... ...corresponds to SHACL path

schema:name schema:name

^schema:knows [sh:inversePath schema:knows]

schema:knows / schema:name (schema:knows schema:name)

schema:knows | schema:follows [sh:alternativePath (schema:knows schema:follows)]

schema:knows? [sh:zeroOrOnePath schema:knows]

schema:knows+ [sh:oneOrMorePath schema:knows]

schema:knows* / schema:name ([sh:zeroOrMorePath schema:knows] schema:name)

Examples use the schema.org vocabulary <https://schema.org>

Validation reports
• Reports the results applying a SHACL shapes graph to a data graph

– a sh:ValidationReport
– three components:

• sh:conforms (either true or false)
• a results_text (from pySHACL)
• zero or more sh:ValidationResults

SHACL validation result properties

Result property Explanation

sh:focusNode The focus node that was being validated when the error happened.

sh:resultPath The path from the focus node. This property is optional usually corresponds to
the sh:path declaration of property shapes.

sh:value The value that violated the constraint, when available .

sh:sourceShape The shape that the focus node was validated against when the constraint was
violated.

sh:source
ConstraintComponent

The IRI that identifies the component that caused the violation.

sh:detail May point to further details about the cause of the error. This property can be
used for reporting errors in nested nested shapes.

sh:resultMessage Textual details about the error. This message can be affected by the
sh:message property.

sh:resultSeverity A value which is equal to the sh:severity value of the shape that caused the
violation error, if present. Otherwise the default value will be sh:Violation.

There is a lot more...
• Logical expressions:

– sh:or, sh:and, sh:xone (exactly one), and sh:not
• String and language constraints:

– sh:length, sh:minLength, sh:maxLength, sh:pattern
– sh:uniqueLang, sh:languageIn

• Value-range constraints on integers value nodes
• sh:severity of constraints
• Non-validating (informational) constraints:

– sh:name, sh:description, sh:order, sh:group
• One shapes graph can owl:imports another

Programming pySHACL
pip install pyshacl

from pyshacl import validate
from rdflib import Graph

data_graph = Graph()
data_graph.parse('...')

shacl_str = “”” ... “””

shacl_graph = Graph()
shacl_graph.parse(

data=shacl_str, format='ttl'
)

results = validate(
data_graph,
shacl_graph=shacl_graph,
inference='both'

)

(conforms,
results_graph,
results_text) = results

print(results_text)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDF Schema
(RDFS)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Why RDF Schema (RDFS)
• RDF is a good start

– excellent as a normal form for facts about individuals
– less suitable for complex concept systems

• e.g., vocabularies, ontologies
– we sometimes need to represent:

• more specific types of resources (subjects, objects)

• more specific types of properties (predicates)

• which types of resources that are the
subjects and objects of which properties?

• RDFS offers more expressive RDF graphs

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Why RDF Schema (RDFS)
• SHACL is excellent for checking RDFS graphs

– but what to do with the violations we discover?
– two options:

• correct them with SPARQL Update
• prevent them with RDFS rules
• more specific types of resources

• RDFS defines
– predefined triples (axioms)
– rules for how some triples can entail additional triples (inference)

• RDFS inference engines enforce the rules automatically

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Why RDF Schema (RDFS)
• RDFS Schema (RDFS):

– a small RDF vocabulary for more expressive graphs
• particularly suitable for defining other vocabularies

– underpinned by precise formal entailment rules
• the rules define the semantics of RDFS

– RDFS is expressed in RDF
• many other vocabularies are defined in plain RDFS
• RDFS is also the foundation for OWL

– conventional prefix:
• rdfs: http://www.w3.org/2000/01/rdf-schema#

RDFS resource classes (rdfs:Class)
• Classes are resources that represent a type of similar resources, which are the

individuals in the class

– e.g., dbpedia:Person, schema:Person, foaf:Person

– class membership is expressed by the rdf:type property:
<RDF individual> rdf:type <RDFS class> .
<RDF individual> a <RDFS class> .

– an individual can belong to several classes (this is common!)

– RDFS classes are different from classes in typical OO programming

• By convention, classes are named with an upper-case initial letter, properties with
lower-case initial letters...

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS subclasses (rdfs:subClassOf)
• Whenever an individual resource belongs to some class,

it necessarily belongs to another class too, e.g.,

– dbpedia:Politician rdfs:subClassOf dbpedia:Person .

• Why subclasses?

– the classes’ semantics become more precise

– more complete query answering

– inferring additional information about resources (entailment)

– subclasses are important because different vocabularies may define
overlapping, but not identical, classes

• introduce a new class in the merged data set

• make the old classes subclasses of the new class

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment
• The meaning of rdfs:subClassOf is defined by an entailment rule...

• Example: classical syllogism

– “All men are mortal.” (Major Premise)

– “Socrates is a man.” (Minor Premise)

– “Socrates is a mortal.” (Valid conclusion)

• This rule is built into all RDFS models!
– RDFS defines several other rules (16 in total)

• Entailment means that:
– many triples are there in our RDFS models

even when we have not added them

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment
• The meaning of rdfs:subClassOf is defined by an entailment rule...

• Example: pattern for classical syllogism in RDF

– ?c1 rdfs:SubclassOf ?c2 . (Major Premise)

– ?s rdf:type ?c1 . (Minor Premise)

– ?s rdf:type ?c2 . (Valid conclusion)

• This rule is built into all RDFS models!
– it is called [rdfs9]

RDFS entailment [rdfs9]
• The meaning of rdfs:subClassOf and the other RDFS concepts is defined by

entailment rules [rdfs9]:

• The triples ?s rdf:type ?c1 .
?c1 rdfs:subClassOf ?c2 .

entail that ?s rdf:type ?c2 .

PREFIX ...
INSERT {

?s rdf:type ?c2 .
} WHERE {

?s rdf:type ?c1 .
?c1 rdfs:subClassOf ?c2 .

}
Here, we express the rule
using SPARQL Update. But
RDFS rules are not really
implemented with SPARQL.

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

What does entailment mean?
• Entailment means that many triples are there in our RDFS graphs

even when we have not asserted them

– 14 entailment rules in RDFS and 2 in RDF

– full list at http://www.w3.org/TR/rdf-mt/

• Different RDFS tools may support entailment rules in different ways, e.g.:

– strategy 1 (“eager”): always add entailed triples when possible

– strategy 2 (“on demand”): only extract entailed triples when needed

– we will use the OWL-RL API in the exercises:
import owlrl

engine = owlrl.RDFSClosure.RDFS_Semantics(graph, False, False, False)
engine.closure()
engine.flush_stored_triples()

https://github.com/RDFLib/OWL-RL
https://owl-rl.readthedocs.io/en/latest/owlrl.html

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Transitive properties
• rdfs:subClassOf is transitive:

– dbpedia:President rdfs:subClassOf dbpedia:Politician .

– dbpedia:Politician rdfs:subClassOf dbpedia:Person .

– dbpedia:President rdfs:subClassOf dbpedia:Person .

• Entails new rdf:type triples about which classes an individual belongs to

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Transitive properties
• rdfs:subClassOf is transitive:

– ?c1 rdfs:subClassOf ?c2 .

– ?c2 rdfs:subClassOf ?c3 .

– ?c1 rdfs:subClassOf ?c3 .

• Entails new rdf:type triples about which classes an individual belongs to

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs11]
• rdfs:subClassOf is transitive:

• The triples ?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c3 .

entail that ?c1 rdfs:subClassOf ?c3 .

PREFIX ...
INSERT {

?c1 rdfs:subClassOf ?c3 .
} WHERE {

?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c3 .

}

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs10]
• rdfs:subClassOf is also reflexive:

• The triple ?c rdf:type rdfs:Class .
entails that ?c rdfs:subClassOf ?c .

PREFIX ...
INSERT {

?c rdfs:subClassOf ?c .
} WHERE {

?c rdf:type rdfs:Class .
}

• “Every class is its own subclass...”

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDF properties (rdf:Property)
• All predicates in a triple have rdf:type rdf:Property

– this is expressed by an entailment rule (next slide!)

– properties have domains and ranges

• their subjects and objects always belong to specific classes

– properties can be transitive

• Why properties?

– similar to subclasses:

• clearer semantics, entailment, complete answers to
queries and defining other concepts, e.g.,

• most classes are defined by their properties...

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDF entailment [rdf1]
• The triple ?s ?p ?o .

entails that ?p rdf:type rdf:Property .

PREFIX rdf: <...>

INSERT {
?p rdf:type rdf:Property .

} WHERE {
?s ?p ?o .

}

• Resources become properties when they are
used as predicates in triples!

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Domain and range of properties
• The subjects and objects that occur in triples along with some property belong to

certain classes

• Example:

– <subject> ex:presidentOf <object> .

– when we see this triple, we may know that:

• the <subject> has rdf:type dbpedia:President

• the <object> has rdf:type dbpedia:Country

– this is part of the semantics of ex:president

• in the context of the ex: vocabulary

– ...can be expressed as follows:

• ex:presidentOf rdfs:domain dbpedia:President .

• ex:presidentOf rdfs:range dbpedia:Country .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs2]
• The triples ?s ?p ?o .

?p rdfs:domain ?t .
entail that ?s rdf:type ?t .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?s rdf:type ?t .

} WHERE {
?s ?p ?o .
?p rdfs:domain ?t .

}

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs3]
• The triples ?s ?p ?o .

?p rdfs:range ?t .
entail that ?o rdf:type ?t .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type ?t .

} WHERE {
?s ?p ?o .
?p rdfs:range ?t .

}

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS axioms
• RDFS axioms:

– triples that are “built into” RDFS

– always there in any RDFS graph

• whether we have not added them or not

– essential part of the semantics of RDFS

– full list at http://www.w3.org/TR/rdf-mt/

– 40 axioms and 3 axiom schemas

• Example axioms for rdf:type:

– rdf:type rdfs:domain rdfs:Resource .

– rdf:type rdfs:range rdfs:Class .

http://www.w3.org/TR/rdf-mt/

RDFS entailment [rdfs3]
• The triples ?s ?p ?o .

?p rdfs:range ?t .
entail that ?o rdf:type ?t .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type ?t .

} WHERE {
?s ?p ?o .
?p rdfs:range ?t .

}

Remember:
rdf:type rdfs:range rdfs:Class .
is an axiom in RDFS. This axiom fits
straight into the rule:

?p = rdf:type
?t = rdfs:Class

 Informative
(not mandatory)

RDFS entailment [rdfs3 + axiom]
• The triples ?s rdf:type ?o .

rdf:type rdfs:range rdfs:Class .
entail that ?o rdf:type rdfs:Class .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type rdfs:Class .

} WHERE {
?s rdf:type ?o .
rdf:type rdfs:range rdfs:Class .

}

This is an axiom in RDFS!

Remember:
rdf:type rdfs:range rdfs:Class .
is an axiom in RDFS. This axiom fits
straight into the rule!

 Informative
(not mandatory)

RDFS entailment
• The triples ?s rdf:type ?o .

rdf:type rdfs:range rdfs:Class .
entail that ?o rdf:type rdfs:Class .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type rdfs:Class .

} WHERE {
?s rdf:type ?o .
rdf:type rdfs:range rdfs:Class .

}

Because
rdf:type rdfs:range rdfs:Class .
is an axiom in RDFS, this rule
entails that every object in an
rdf:type-triple is an RDFS class.

 Informative
(not mandatory)

RDFS entailment
• The triples ?s rdf:type ?o .

entail that ?o rdf:type rdfs:Class .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type rdfs:Class .

} WHERE {
?s rdf:type ?o .

}

This rule entails that every object in
an rdf:type-triple is an RDFS class.

It is not expressed explicitly in RDFS,
but is always there in practice, because
it is implied by the rule and the axiom
we have just shown.

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Subordinate properties (rdfs:subPropertyOf)
• Expresses that: whenever a subject resource and an object resource are related by

a particular property, they are necessarily also related by another property, e.g.,

– whenever this is a fact:
ex:Paul_Manafort ex:convictedFor ex:TaxFraud .

– then this is necessarily also a fact:
ex:Paul_Manafort ex:chargedWith ex:TaxFraud .

– we can express this as a subproperty relationship:
ex:convictedFor rdfs:subPropertyOf ex:chargedWith .

• Useful for connecting related properties from distinct data sets, e.g.:

– rdfs:label, dc:title, foaf:name, skos:prefLabel, skos:altLabel

– ...just like rdfs:subClassOf for properties

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs7]
• “The triples ?s ?p1 ?o .

?p1 rdfs:subPropertyOf ?p2 .
 entail that ?s ?p2 ?o .”

PREFIX rdfs: <...>

INSERT {
?s ?p2 ?o .

} WHERE {
?s ?p1 ?o .
?p1 rdfs:subPropertyOf ?p2 .

}

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs5]
• rdfs:subPropertyOf is transitive:

• The triples ?p1 rdfs:subPropertyOf ?p2 .
 ?p2 rdfs:subPropertyOf ?p3 .

entail that ?p1 rdfs:subPropertyOf ?p3 .

PREFIX rdfs: <...>

INSERT {
?p1 rdfs:subPropertyOf ?p3 .

} WHERE {
?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p3 .

}

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs6]
• rdfs:subPropertyOf is reflexive:

• The triple ?p rdf:type rdf:Property .
entails that ?p rdfs:subPropertyOf ?p .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?p rdfs:subPropertyOf ?p .

} WHERE {
?p rdf:type rdf:Property .

}

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Additional classes
• RDFS also defines rdfs:Class-es for:

– resources: rdfs:Resource

• the class of all resources

– literals: rdfs:Literal

• the class of all literals

• rdfs:Literal rdfs:subClassOf rdfs:Resource .

– datatypes: rdfs:Datatype

• the class of all datatypes

• rdfs:Datatype rdfs:subClassOf rdfs:Class .

– all of them have rdf:type rdfs:Class

– all of them have entailment rules and axioms

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs4a]
• Every subject in a triple is a resource...

• The triple ?s ?p ?o .
entails that ?s rdf:type rdfs:Resource .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?s rdf:type rdfs:Resource .

} WHERE {
?s ?p ?o .

}

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs4b]
• ...and every object too

• The triple ?s ?p ?o .
entails that ?o rdf:type rdfs:Resource .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?o rdf:type rdfs:Resource .

} WHERE {
?s ?p ?o .

}

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

RDFS entailment [rdfs8]
• Every class corresponds to a set of resources.

– ...or to a subset of the set of all resources.

• The triple ?c rdf:type rdfs:Class .
entails that ?c rdfs:subClassOf rdfs:Resource .

PREFIX rdf: <...>
PREFIX rdfs: <...>

INSERT {
?c rdfs:subClassOf rdfs:Resource .

} WHERE {
?c rdf:type rdfs:Class .

}

 Informative
(not mandatory)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Utility properties in RDFS
• Straightforward and much used:

– rdfs:label:
• a human-readable label

– rdfs:comment:
• a human-readable comment

– rdfs:seeAlso:
• reference to further information

– rdfs:isDefinedBy:
• a human-readable definition
• is a rdfs:subPropertyOf rdfs:seeAlso

...often take “language-tagged”@en strings as objects

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

What we cannot express...
• RDFS has many limitations, e.g., it cannot say:

– “my ancestors' ancestors are also my ancestors”

– “a Person has a unique birth number”

– “a Person has exactly one father”

– “a SoccerTeam has 11 players, but a BasketballTeam has 5”

– “classes with different URIs actually represent the same class”

– “resources with different URIs represent the same resource”

– “properties with different URIs are actually the same”

– “two individuals with different URIs are actually different”

– “two classes cannot share individuals (they are disjoint)”

– “a class is a combination (union or intersection) of other classes”

– “a class is a negation of another class”

• Web Ontology Language (OWL) does all this and more!

Next week:
Ontologies (OWL)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

