
Welcome to INFO216:
Knowledge Graphs

Spring 2023

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Session 10: Formal ontologies (OWL-DL)
 Themes:

– OWL-DL
• core OWL concepts
• restriction classes

– description logic
– decision problems

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Readings
• Sources:

– Allemang, Hendler & Gandon (2020):
Semantic Web for the Working Ontologist, 3rd edition:
chapters 12-13, but chapters 11-12 in the 2nd edition

– Blumauer & Nagy (2020):
Knowledge Graph Cookbook – Recipes that Work:
e.g., pages 105-109, 123-124, (supplementary)

• Resources in the wiki <http://wiki.uib.no/info216>, e.g.:
– OWL 2 Overview (http://www.w3.org/TR/owl-overview/)
– OWL 2 Primer (http://www.w3.org/TR/owl-primer/):

• show: Turtle and Manchester syntax
• hide: other syntaxes

The Core
OWL Concepts

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Web Ontology Language versions
• OWL “1” (2002):

– OWL Full – anything goes

– OWL DL – fragment of OWL Full, formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):

– backwards compatible with OWL “1”!

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

• formal and powerful, but reasoning can get prohibitively slow

– OWL2 DL – defines three faster fragments of OWL2 DL:

• OWL2 RL – rule-based semantics, also OWL LD – for Linked Data

• OWL2 EL – quick DL reasoning

• OWL2 QL – suitable for query rewriting

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Classes, properties, and individuals (←S08)
• Web Ontology Language (OWL):

– builds on RDF and RDFS
– uses classes and properties from RDF and RDFS
– adds precision and formality

• Basic OWL-concepts:
– owl:Thing (equivalent to rdfs:Resource)
– owl:Class (equivalent to rdfs:Class)
– owl:ObjectProperty (equivalent to rdf:Property)
– owl:NamedIndividual (things with URIs and that are not classes)

• Good practice: keep Classes, Individuals, and Properties disjoint,
i.e., no resource has more than one of them as rdf:type
– in OWL DL, this is mandatory...

http://www.w3.org/TR/owl2-rdf-based-semantics/

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Building blocks
• OWL 2 has three building blocks:

– entities:

• refer to real-world entities using URIs

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty, owl:AnnotationProperty,
owl:ObjectProperty

– axioms:

• basic statements expressed by the OWL ontology

• every triple in the RDF graph is an axiom
– expressions:

• use constructors to
• define more complex entities
• by combining simpler ones

← can be true or false!

 OWL2 can be seen as
 an extension of RDF and RDFS,

 but can also stand on
 its own feet.

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

More building blocks
• owl:Thing:

– is equivalent to rdfs:Resource
– logic interpretation: True

• called the top concept in description logic (DL)
• owl:Nothing

– is the empty set
– no resource has it as its rdf:type
– logic interpretation: False

• called the bottom concept in DL

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Named and constructed classes
• owl:NamedClass (with an URI):

– semantics are given by:
• URI-s, labels and other annotations
• domain, range, subClassOf and other relationships

• Constructed (or complex) owl:Class:
– built from existing classes, properties, individuals

• which can be named or anonymous
– constructed classes are anonymous upon declaration,

• but can be named later
– unions, intersections and negations of existing classes (←S08)
– enumeration of existing individuals (←S08)
– restrictions on existing properties

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Object and datatype properties
• In RDF triples, the object is either a resource or a literal

– OWL has two corresponding types of properties
– owl:ObjectProperty:

• rdfs:range (“verdiområde”) is usually an OWL-class of individuals
• used in axioms (e.g., RDF triples) with a resource object

– owl:DatatypeProperty:
• rdfs:range is an RDFS-datatype
• used in axioms (e.g., RDF triples) with a literal object

– the rdfs:domain (“definisjonsmengden”) is always
an OWL-class of individuals

 Formally, owl:DatatypeProperty is
 rdfs:subPropertyOf owl:ObjectProperty .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Summary: core OWL concepts
• owl:Thing, owl:Nothing

owl:NamedIndividual
• owl:NamedClass, owl:Class
• owl:ObjectProperty, owl:DatatypeProperty
• owl:AnnotationProperty, owl:OntologyProperty

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Summary: more precise properties (←S08)
• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty
• owl:TransitiveProperty
• owl:FunctionalProperty, owl:InverseFunctionalProperty
• owl:hasKey
• Also:

– negated properties
– chained properties, e.g.:

fam:hasGrandparent
owl:propertyChainAxiom (:hasParent :hasParent) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Summary: sameness and difference (←S08)
• Individuals:

– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:
– pairwise: owl:equivalentClass, owl:disjointWith
– groupwise difference: owl:AllDisjointClasses

• Properties:
– pairwise: equivalentProperty, propertyDisjointWith
– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:
– owl:distinctMembers (preferred) or owl:members

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Summary: complex classes (←S08)
• owl:oneOf
• owl:unionOf
• owl:intersectionOf
• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual,

owl:assertionProperty, owl:targetIndividual

OWL restriction
classes

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican
a owl:Restriction ;
owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican owl:intersectionOf (
dbr:Person
[a owl:Restriction ;

owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States)

]
) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Existential property restrictions
• Defining a class by the existence of a relation (object property) to an

individual in (another or the same) class, e.g.:
– ex:President owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom owl:Thing

]
) .

• owl:someValuesFrom: each individual in the defined class has at least one
object property (given by owl:onProperty) to an individual in the other class
(given by owl:someValuesFrom)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Existential property restrictions
• Defining a class by the existence of a relation (object property) to an

individual in (another or the same) class, e.g.:
– ex:US_President owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom dbr:UnitedStates

]
) .

• owl:someValuesFrom: each individual in the defined class has at least one
object property (given by owl:onProperty) to an individual in the other class
(given by owl:someValuesFrom)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

]
) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

]
) .

What is
wrong here?

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

]
[a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:someValuesFrom owl:Thing

]
) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Property self-reflexion
• Defining a class by a Self value on one of its properties, e.g.:

– ex:Narcissist
a owl:Restriction ;
owl:onProperty ex:loves ;
owl:hasSelf "true"^^xsd:boolean .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Datatype property restriction
• Restrictions on data range, e.g.:

– fam:personAge rdfs:range
[a rdfs:Datatype;

owl:onDatatype xsd:integer;
owl:withRestrictions (

[xsd:minInclusive "0"^^xsd:integer]
[xsd:maxInclusive "130"^^xsd:integer])

] .
– :toddlerAge rdfs:range

[a rdfs:Datatype;
owl:oneOf ("1"^^xsd:integer "2"^^xsd:integer)

] .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Cardinality restriction
• Defining a class by the number of object values its individuals have for

some property, e.g.:
– music:Quartet owl:intersectionOf (

music:Ensemble
[a owl:Restriction ;

owl:onProperty music:hasInstrument ;
owl:cardinality 4]

) .
• owl:cardinality gives the exact cardinality

owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Qualified cardinality restriction
• Defining a class by the number of object values its individuals have of a

given class for some property, e.g.:
– pol:Triumvirate owl:intersectionOf (

pol:PoliticalLeadership
[a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader]

) .
• owl:qualifiedCardinality gives the exact cardinality

owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Qualified cardinality restriction
• music:StringQuartet owl:intersectionOf (

music:MusicalQuartet
[a owl:Class ;

owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violin]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Viola]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cello]) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Summary: property restrictions
• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality
• owl:qualifiedCardinality, owl:minQualifiedCardinality,

owl:maxQualifiedCardinality, owl:onClass

Description logic

OWL2 DL OWL2 Full

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Relation to OWL
• OWL DL and description logic are closely matched

– everything in OWL DL has a DL-counterpart

– almost everything in DL can be expressed in OWL DL

• DL is a family of logic systems:

– some of them correspond to particular OWL profiles (more later)

– OWL1 DL: S H O I N (D)

– OWL2 DL: S R O I Q (D)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Description logic and other logics
• Proposition logics are about statements (propositions):

• “Robin is a StudentAssistant” ⇐
“Robin is a Student” “⋀ Robin is a Teacher”

• (First order) predicate logics are about predicates and objects:
• ∀x.(StudentAssistant(x) Student(x) Teacher(x))⇔ ⋀

• Description logics are about concepts:
• StudentAssistant Student Teacher≐ ⊓

– ...and also about roles and individuals

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Description logics
• Description Logic (DL)

– a simple fragment of predicate logic
• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)
– but can answers many decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL
– can be used to:

• describe concepts (“Tbox”) and their roles (“Rbox”)

• describe individuals and their relations (“ABox”)

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Definition of concepts (“begreper”)
• InternalCensor Censor Employee≐ ⊓

• ExternalCensor Censor ¬ Employee≐ ⊓

• Agent Person Organisation≐ ⊔ Group⊔

– concepts: InternalCensor, Censor, Employee…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ ..using Human and Parent..

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Definition of concepts (“begreper”)
• InternalCensor Censor Employee≐ ⊓

• ExternalCensor Censor ¬ Employee≐ ⊓

• Agent Person Organisation≐ ⊔ Group⊔

– concepts: InternalCensor, Censor, Employee…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ Human ¬ Parent⊓

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Types of concepts (“begreper”)
• InternalCensor Censor Employee≐ ⊓

• ExternalCensor Censor ¬ Employee≐ ⊓

• Agent Person Organisation≐ ⊔ Group⊔

– atomic (or basic, primitive) concepts:
Censor, Employee, Person…

– only used on the r.h.s. of definitions

– concept expressions (complex concepts):
Censor Employee, ¬ Employee⊓ …

– only used on the r.h.s. of definitions

– defined (and named) concepts:
InternalCensor, ExternalCensor, Agent…

– defined on the l.h.s. (left-hand side) of definitions

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Atomic, complex and defined concepts
• Atomic (or basic) concepts

– given, always named
– can only be used on the r.h.s. (right-hand side) of a ≐ definition
– correspond to simple OWL classes

• Concept expressions
– expressed using other concepts (and roles)
– can only be used on the r.h.s. (right-hand side) of a ≐ definition
– correspond to complex OWL classes

• Defined concepts can also be named

– must appear on the l.h.s. (right-hand side) of a ≐ definition
– concept_name ≐ concept_expression

• ...similar distinction between atomic and defined roles

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Roles

• President Person presidentOf.∃≐ ⊓ ⊤
• Independent Person ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident Person presidentOf.UnitedStates≐ ⊓ ∃

– roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ ..using Human, hasChild, Parent..

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

An atomic
(or basic) role

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Roles

• President Person presidentOf.≐ ⊓ ∃ ⊤
• Independent Person ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident Person presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Roles

• President Person presidentOf.≐ ⊓ ∃ ⊤
• Independent Person ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident Person presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ Human hasChild. hasChild.⊓ ∃ ∃ ⊤

• Uncle ≐using Male, hasSibling, hasChild....

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Roles

• President Person presidentOf.≐ ⊓ ∃ ⊤
• Independent Person ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident Person presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ Human hasChild. hasChild.⊓ ∃ ∃ ⊤

• Uncle Male hasSibling. hasChild.≐ ⊓ ∃ ∃ ⊤

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Null concept
• Person Group ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ... ⊥⊑ (“subsumption of bottom”)
to say that something is not the case

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Null concept
• Person Group ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ... ⊑ ⊥ (“subsumption of bottom”)
to say that something is not the case

• This is a DL axiom
• so far we have just defined concepts

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Axioms

• ≐ is used for definitions of new concepts
• ≡ is used for equivalence axioms about concepts

• ...but some authors used it for definitions too :-/
• Axioms are equivalences or subsumptions:

– subsumption axioms (⊑):
– composite concept (role) expressions on both sides

– equivalence axioms (≡):
– composite concept (role) expressions on both sides
– corresponds to: C D, D C⊑ ⊑

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

More role definitions
• LoyalRepublican Republican hasParty.Republican≐ ⊓ ∀

• universal restriction: ∀
• Monotheist =1 believesInDeity.≐ ⊤

• Polygamist ≥3 hasSpouse.≐ ⊤

• number restrictions: =, ≥, ≤

• Narcissist hasLoveFor.≐ ∃ Self
• self references: Self

• MassMurderer ≐ ...using hasKilled, Human...

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

More uses of roles
• LoyalRepublican Republican hasParty.Republican≐ ⊓ ∀

• universal restriction: ∀
• Monotheist =1 believesInDeity.≐ ⊤

• Polygamist ≥3 hasSpouse.≐ ⊤

• number restrictions: =, ≥, ≤

• Narsissist hasLoveFor.≐ ∃ Self
• self references: Self

• MassMurderer ≥4 hasKilled.Human≐

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Inverse and transitive roles

• StrayDog Dog ≐ ⊓ ¬ hasOwner∃ -.⊤
• hasParent hasChild≐ -

• PureBred hasParent≐ ∀ *.PureBred

• inverse role: hasChild-

• transitive role: hasParent*

• Niece ≐ ..Woman, hasChild, hasSibling..

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Inverse and transitive roles

• StrayDog Dog ≐ ⊓ ¬ hasOwner∃ -.⊤
• hasParent hasChild≐ -

• PureBred hasParent≐ ∀ *.PureBred

• inverse role: hasChild-

• transitive role: hasParent*

• Niece ≐ Woman hasChild⊓ ∃ -.hasSibling.⊤
• We just define a role!

– until now, we have only defined concepts

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Composite roles

• Similar to composite concepts, e.g.:

– holdsPresidency hasParty≐ - o presidentOf

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Not all supported by OWL-DL and the reasoning engines

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter ≐ ..using hasChild, Female..

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Composite roles

• Similar to composite concepts, e.g.:

– holdsPresidency hasParty≐ - o presidentOf

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Not all supported by OWL-DL and the reasoning engines

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter (hasChild | Female)≐

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Putting it together

• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.DebunkedContent

• VerifyingSource ≐ ∃ hasSource-.VerifiedContent
 ⊓ ∀ hasSource-.VerifiedContent

An acyclic,
definitional TBox

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Putting it together

• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.DebunkedContent

• VerifyingSource ≐ ∃ hasSource-.VerifiedContent
 ⊓ ∀ hasSource-.VerifiedContent

Acyclic and
unequivocal!

Concept expressions
of atomic concepts

Defined concepts

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Expanded definitional TBox

• Acyclicity: no cyclic definitions in the TBox (“Terminology Box”)

• Unequivocality: each named defined term is
only used on the l.h.s. of a single definition

• Concept expansion:
• every concept can be written as an expression of

only atomic concepts
• algorithm:

• start with the expression that defines the concept
• recursively replace all the defined concepts used

in the expression with their definitions
• halt when only atomic concepts remain

Expanded definitional TBox

• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.
 debunked∃ By.FactChecker

• VerifyingSource ≐ ∃ hasSource-.
 ∃ verifiedBy.FactChecker

 ⊓ ∀ hasSource-.
 ∃ verifiedBy.FactChecker

Only basic concepts on
the right hand sides!

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Types of axioms
• Terminology axioms (TBox)

– subsumptions: C ⊑ D
– equivalences: C ≡ D

corresponds to: C ⊑ D, D ⊑ C
• Role axioms (RBox)

• e.g., subsumptions: R S⊑
• Individual assertion axioms (ABox)

– class assertions: a:C
– role assertions: <a,b>:R

• Knowledge base K = (T, A) or K = (T, R, A)

C and D are expressions!

a and b are individuals.
R and S are roles!

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Decision
Problems

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Reasoning over knowledge bases
• What more can we do with ontologies?

• For example:
– given a source ontology that describes media content along with its

sources and trustworthiness
– we can answer questions like, e.g.:

– is trusted content a type of content?
– can content be both verified and debunked?
– is all verified content trusted?

– competency questions are what we want an ontology to answer
– DL offers a clear and compact way or representing

and reasoning about questions such as these!

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Decision problems
• A computational problem with a yes/no answer, e.g.

– is C subsumed by D? K C D⊨ ⊑

– are C and D consistent? K a:(⊨ C ⊓ D)

– are C and D equivalent? K ⊨ C ≡ D

– are C and D disjoint? K ⊨ C D ⊓ ⊑ ⊥

– does a belong to C: K a:C⊨ ?
– is a R-related to b: K <a,b>:R⊨ ?

• Given a knowledge base K , reasoning engines can give yes / no answers
• ...but not all decision problems are decidable
• ...or have tractable complexity
• depends on the expressions used!

C and D are
 classes,

a and b are
individuals.
R is a role!

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Decision problems in practice
• Description logic is implemented by reasoning engines/OWL reasoner

– e.g., HermiT and Pellet
– distinct from inference engines, such as OWL-RL

• Protegé-OWL
– comes with HermiT, more plugins can be installed

• Solves decision problems, e.g.,
– classifiy individuals
– find subclass relationships (subsumptions)
– find unsatisfiable classes (concepts)
– detect inconsistencies

Manchester OWL
syntax

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Manchester OWL-syntax
• A simple DL notation without special symbols

– used by Protege-OWL to construct classes

– similar to DL syntax

• Class: InternalCensor
EquivalentTo: Censor and Employee

• Class: ExternalCensor
EquivalentTo: Censor and not Employee

• Class: Agent
EquivalentTo: Person or Organisation or Group

• Can be used to serialise complete ontologies

– ...we will look mostly at TBox expressions

• http://www.w3.org/TR/owl2-manchester-syntax/

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Comparison
• DL:

ExternalCensor Censor ¬≐ ⊓ Employee

• Machester OWL:
Class: ExternalCensor

EquivalentTo: Censor and not Employee

• Turtle:
uib:ExternalCensor owl:equivalentClass

owl:intersectionOf (
uib:Censor
[a owl:Class ;
 owl:complementOf uib:Employee
]

) .

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Roles in Manchester OWL syntax
• Class: President

EquivalentTo:
Person and presidentOf some owl:Thing

• Class: USPresident
EquivalentTo:
Person and presidentOf some UnitedStates

• Class: Independent
EquivalentTo:
Person and not hasParty some owl:Thing

– universal concept (top): owl:Thing

– existential restriction: some

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Null concept in Manchester OWL syntax
• Class: <class-name>

EquivalentTo: Person and Group
SubClassOf: owl:Nothing

– null concept (bottom): owl:Nothing

– subsumption (subconcept): SubClassOf:

– equivalence: EquivalentTo:

• ...used both for definitions and for
axioms

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

More roles in Manchester OWL syntax
• Class: LoyalRepublican

EquivalentTo:
Person and hasParty only RepublicanParty

– value restriction: only

• Class: Monotheist
EquivalentTo: Person and

 believesInDeity exactly 1

• Class: Polygamist
EquivalentTo: hasSpouse min 3

– number restriction: exactly, min, max

• Class: Narcissist
EquivalentTo: loves some Self

(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Inverse, symmetric and transitive roles
• Class: StrayDog

EquivalentTo: Dog and not inverse hasOwner some Person

• Class: hasParent
EquivalentTo: inverse hasChild

• ObjectProperty: hasSibling
Characteristics: Symmetric

• ObjectProperty: hasAncestor
Characteristics: Transitive

• inverse role: inverse

• symmetric role:
Characteristics: SymmetricProperty

• transitive role:
Characteristics: TransitiveProperty

After Easter:
Graph Embeddings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

