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Session 10: Formal ontologies (OWL-DL)
 Themes:

– OWL-DL
• core OWL concepts
• restriction classes

– description logic
– decision problems
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Readings
• Sources:

– Allemang, Hendler & Gandon (2020): 
Semantic Web for the Working Ontologist, 3rd edition:
chapters 12-13, but chapters 11-12 in the 2nd edition

– Blumauer & Nagy (2020):
Knowledge Graph Cookbook – Recipes that Work:
e.g., pages 105-109, 123-124, (supplementary)

• Resources in the wiki <http://wiki.uib.no/info216>, e.g.:
– OWL 2 Overview (http://www.w3.org/TR/owl-overview/)
– OWL 2 Primer (http://www.w3.org/TR/owl-primer/):

• show: Turtle and Manchester syntax
• hide: other syntaxes



The Core
OWL Concepts
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Web Ontology Language versions
• OWL “1” (2002):

– OWL Full – anything goes

– OWL DL – fragment of OWL Full, formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):

– backwards compatible with OWL “1”!

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

• formal and powerful, but reasoning can get prohibitively slow

– OWL2 DL – defines three faster fragments of OWL2 DL:

• OWL2 RL – rule-based semantics, also OWL LD – for Linked Data

• OWL2 EL – quick DL reasoning

• OWL2 QL – suitable for query rewriting
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Classes, properties, and individuals (←S08)
• Web Ontology Language (OWL):

– builds on RDF and RDFS
– uses classes and properties from RDF and RDFS
– adds precision and formality

• Basic OWL-concepts:
– owl:Thing (equivalent to rdfs:Resource)
– owl:Class (equivalent to rdfs:Class)
– owl:ObjectProperty (equivalent to rdf:Property)
– owl:NamedIndividual (things with URIs and that are not classes)

• Good practice: keep Classes, Individuals, and Properties disjoint, 
i.e., no resource has more than one of them as rdf:type
– in OWL DL, this is mandatory...



http://www.w3.org/TR/owl2-rdf-based-semantics/
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Building blocks
• OWL 2 has three building blocks:

– entities: 

• refer to real-world entities using URIs

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty, owl:AnnotationProperty, 
owl:ObjectProperty

– axioms: 

• basic statements expressed by the OWL ontology

• every triple in the RDF graph is an axiom
– expressions: 

• use constructors to
• define more complex entities 
• by combining simpler ones

← can be true or false!

      OWL2 can be seen as 
      an extension of RDF and RDFS,

     but can also stand on 
      its own feet.
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More building blocks
• owl:Thing:

– is equivalent to rdfs:Resource
– logic interpretation: True 

• called the top concept in description logic (DL)
• owl:Nothing

– is the empty set
– no resource has it as its rdf:type
– logic interpretation: False 

• called the bottom concept in DL
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Named and constructed classes
• owl:NamedClass (with an URI):

– semantics are given by:
• URI-s, labels and other annotations
• domain, range, subClassOf and other relationships

• Constructed (or complex) owl:Class:
– built from existing classes, properties, individuals

• which can be named or anonymous
– constructed classes are anonymous upon declaration, 

• but can be named later
– unions, intersections and negations of existing classes (←S08)
– enumeration of existing individuals (←S08)
– restrictions on existing properties
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Object and datatype properties
• In RDF triples, the object is either a resource or a literal

– OWL has two corresponding types of properties
– owl:ObjectProperty:

• rdfs:range (“verdiområde”) is usually an OWL-class of individuals
• used in axioms (e.g., RDF triples) with a resource object

– owl:DatatypeProperty:
• rdfs:range is an RDFS-datatype
• used in axioms (e.g., RDF triples) with a literal object

– the rdfs:domain (“definisjonsmengden” ) is always 
an OWL-class of individuals

        Formally, owl:DatatypeProperty is
 rdfs:subPropertyOf owl:ObjectProperty .
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Summary: core OWL concepts
• owl:Thing, owl:Nothing

owl:NamedIndividual
• owl:NamedClass, owl:Class
• owl:ObjectProperty, owl:DatatypeProperty
• owl:AnnotationProperty, owl:OntologyProperty
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Summary:  more precise properties (←S08)
• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty
• owl:TransitiveProperty
• owl:FunctionalProperty, owl:InverseFunctionalProperty
• owl:hasKey
• Also:

– negated properties
– chained properties, e.g.:

fam:hasGrandparent  
owl:propertyChainAxiom  ( :hasParent  :hasParent ) .
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Summary: sameness and difference (←S08)
• Individuals:

– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent 

• Classes:
– pairwise: owl:equivalentClass, owl:disjointWith
– groupwise difference: owl:AllDisjointClasses

• Properties:
– pairwise: equivalentProperty, propertyDisjointWith
– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:
– owl:distinctMembers (preferred) or owl:members 
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Summary: complex classes (←S08)
• owl:oneOf
• owl:unionOf
• owl:intersectionOf
• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual, 

owl:assertionProperty, owl:targetIndividual



OWL restriction
classes
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Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican 
a owl:Restriction ;
owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States) .
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Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican owl:intersectionOf (
dbr:Person
[ a owl:Restriction ;

owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States)

] 
) .
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Existential property restrictions
• Defining a class by the existence of a relation (object property) to an 

individual in (another or the same) class, e.g.:
– ex:President owl:intersectionOf (

dbr:Person
[ a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom owl:Thing

 ] 
) .

• owl:someValuesFrom: each individual in the defined class has at least one 
object property (given by owl:onProperty) to an individual in the other class 
(given by owl:someValuesFrom)
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Existential property restrictions
• Defining a class by the existence of a relation (object property) to an 

individual in (another or the same) class, e.g.:
– ex:US_President owl:intersectionOf (

dbr:Person
[ a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom dbr:UnitedStates

] 
) .

• owl:someValuesFrom: each individual in the defined class has at least one 
object property (given by owl:onProperty) to an individual in the other class 
(given by owl:someValuesFrom)
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Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to 

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican  owl:intersectionOf (

dbr:Person 
[ a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

] 
) .
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Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to 

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican  owl:intersectionOf (

dbr:Person 
[ a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

] 
) .

What is
wrong here?
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Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to 

individuals in (another or the same) class, e.g.:
– ex:LoyalRepublican  owl:intersectionOf (

dbr:Person 
[ a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:allValuesFrom dbr:Republican_Party_(United_States)

]
[ a owl:Restriction ;

owl:onProperty dbr:hasParty ;
owl:someValuesFrom owl:Thing

] 
) .
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Property self-reflexion
• Defining a class by a Self value on one of its properties, e.g.:

– ex:Narcissist
a         owl:Restriction ;
owl:onProperty  ex:loves ;
owl:hasSelf     "true"^^xsd:boolean .
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Datatype property restriction
• Restrictions on data range, e.g.:

– fam:personAge rdfs:range
[ a rdfs:Datatype;

owl:onDatatype  xsd:integer;
owl:withRestrictions (

[ xsd:minInclusive  "0"^^xsd:integer ]
[ xsd:maxInclusive  "130"^^xsd:integer ]  )

] .
– :toddlerAge rdfs:range

[ a rdfs:Datatype;
owl:oneOf ( "1"^^xsd:integer  "2"^^xsd:integer)

] .
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Cardinality restriction
• Defining a class by the number of object values its individuals have for 

some property, e.g.:
– music:Quartet owl:intersectionOf (

music:Ensemble
[ a owl:Restriction ;

owl:onProperty music:hasInstrument ;
owl:cardinality 4 ] 

) .
• owl:cardinality gives the exact cardinality

owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality
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Qualified cardinality restriction
• Defining a class by the number of object values its individuals have of a 

given class for some property, e.g.:
– pol:Triumvirate owl:intersectionOf (

pol:PoliticalLeadership
[ a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader  ] 

) .
• owl:qualifiedCardinality gives the exact cardinality

owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality
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Qualified cardinality restriction
• music:StringQuartet owl:intersectionOf (

music:MusicalQuartet
[ a owl:Class ;

owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violin ]

[ a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Viola ]

[ a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cello ] ) .
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Summary: property restrictions
• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality
• owl:qualifiedCardinality, owl:minQualifiedCardinality, 

owl:maxQualifiedCardinality, owl:onClass



Description logic



OWL2 DL OWL2 Full
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Relation to OWL
• OWL DL and description logic are closely matched

– everything in OWL DL has a DL-counterpart

– almost everything in DL can be expressed in OWL DL

• DL is a family of logic systems:

– some of them correspond to particular OWL profiles (more later)

– OWL1 DL: S H O I N ( D )

– OWL2 DL: S R O I Q ( D )
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Description logic and other logics
• Proposition logics are about statements (propositions):

• “Robin is a StudentAssistant”  ⇐
“Robin is a Student”  “⋀ Robin is a Teacher”

• (First order) predicate logics are about predicates and objects:
• ∀x.(StudentAssistant(x)  Student(x)  Teacher(x))⇔ ⋀

• Description logics are about concepts:
• StudentAssistant  Student  Teacher≐ ⊓

– ...and also about roles and individuals
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Description logics
• Description Logic (DL)

– a simple fragment of predicate logic
• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)
– but can answers many decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL
– can be used to:

• describe concepts (“Tbox”) and their roles (“Rbox”)

• describe individuals and their relations (“ABox”)
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Definition of concepts (“begreper”)
• InternalCensor  Censor  Employee≐ ⊓

• ExternalCensor  Censor  ¬ Employee≐ ⊓

• Agent  Person  Organisation≐ ⊔   Group⊔

– concepts: InternalCensor, Censor, Employee…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ ..using Human and Parent..
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Definition of concepts (“begreper”)
• InternalCensor  Censor  Employee≐ ⊓

• ExternalCensor  Censor  ¬ Employee≐ ⊓

• Agent  Person  Organisation≐ ⊔   Group⊔

– concepts: InternalCensor, Censor, Employee…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ Human  ¬ Parent⊓
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Types of concepts (“begreper”)
• InternalCensor  Censor  Employee≐ ⊓

• ExternalCensor  Censor  ¬ Employee≐ ⊓

• Agent  Person  Organisation≐ ⊔   Group⊔

– atomic (or basic, primitive) concepts: 
Censor, Employee, Person…

– only used on the r.h.s. of definitions

– concept expressions (complex concepts):
Censor  Employee, ¬ Employee⊓ …

– only used on the r.h.s. of definitions

– defined (and named) concepts: 
InternalCensor, ExternalCensor, Agent…

– defined on the l.h.s. (left-hand side) of definitions
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Atomic, complex and defined concepts
• Atomic (or basic) concepts

– given, always named
– can only be used on the r.h.s. (right-hand side) of a ≐ definition
– correspond to simple OWL classes

• Concept expressions
– expressed using other concepts (and roles)
– can only be used on the r.h.s. (right-hand side) of a ≐ definition
– correspond to complex OWL classes

• Defined concepts can also be named

– must appear on the l.h.s. (right-hand side) of a ≐ definition
– concept_name ≐ concept_expression

• ...similar distinction between atomic and defined roles
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Roles

• President  Person  presidentOf.∃≐ ⊓ ⊤
• Independent  Person  ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident  Person  presidentOf.UnitedStates≐ ⊓ ∃

– roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ ..using Human, hasChild, Parent..

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

An atomic
(or basic) role
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Roles

• President  Person  presidentOf.≐ ⊓ ∃ ⊤
• Independent  Person  ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident  Person  presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..
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Roles

• President  Person  presidentOf.≐ ⊓ ∃ ⊤
• Independent  Person  ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident  Person  presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ Human   hasChild.  hasChild.⊓ ∃ ∃ ⊤

• Uncle ≐ ....using Male, hasSibling, hasChild....
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Roles

• President  Person  presidentOf.≐ ⊓ ∃ ⊤
• Independent  Person  ¬ hasParty.≐ ⊓ ∃ ⊤
• USPresident  Person  presidentOf.UnitedStates≐ ⊓ ∃

• roles: presidentOf, hasParty…

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ Human   hasChild.  hasChild.⊓ ∃ ∃ ⊤

• Uncle  Male   hasSibling.  hasChild.≐ ⊓ ∃ ∃ ⊤
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Null concept
• Person  Group  ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ...  ⊥⊑  (“subsumption of bottom”)
to say that something is not the case
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Null concept
• Person  Group  ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ...  ⊑ ⊥ (“subsumption of bottom”)
to say that something is not the case

• This is a DL axiom
• so far we have just defined concepts
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Axioms

• ≐ is used for definitions of new concepts
• ≡ is used for equivalence axioms about concepts

• ...but some authors used it for definitions too :-/
• Axioms are equivalences or subsumptions:

– subsumption axioms (⊑): 
– composite concept (role) expressions on both sides

– equivalence axioms (≡): 
– composite concept (role) expressions on both sides
– corresponds to: C  D, D  C⊑ ⊑
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More role definitions
• LoyalRepublican  Republican  hasParty.Republican≐ ⊓ ∀

• universal restriction: ∀
• Monotheist  =1 believesInDeity.≐ ⊤

• Polygamist  ≥3 hasSpouse.≐ ⊤

• number restrictions: =, ≥, ≤

• Narcissist  hasLoveFor.≐ ∃ Self
• self references: Self

• MassMurderer ≐ ...using hasKilled, Human...
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More uses of roles
• LoyalRepublican  Republican  hasParty.Republican≐ ⊓ ∀

• universal restriction: ∀
• Monotheist  =1 believesInDeity.≐ ⊤

• Polygamist  ≥3 hasSpouse.≐ ⊤

• number restrictions: =, ≥, ≤

• Narsissist  hasLoveFor.≐ ∃ Self
• self references: Self

• MassMurderer  ≥4 hasKilled.Human≐
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Inverse and transitive roles

• StrayDog  Dog  ≐ ⊓ ¬ hasOwner∃ -.⊤
• hasParent  hasChild≐ -

• PureBred  hasParent≐ ∀ *.PureBred

• inverse role: hasChild-

• transitive role: hasParent*

• Niece ≐ ..Woman, hasChild, hasSibling..
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Inverse and transitive roles

• StrayDog  Dog  ≐ ⊓ ¬ hasOwner∃ -.⊤
• hasParent  hasChild≐ -

• PureBred  hasParent≐ ∀ *.PureBred

• inverse role: hasChild-

• transitive role: hasParent*

• Niece ≐ Woman  hasChild⊓ ∃ -.hasSibling.⊤
• We just define a role!

– until now, we have only defined concepts



(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Composite roles

• Similar to composite concepts, e.g.:

– holdsPresidency  hasParty≐ - o presidentOf

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Not all supported by OWL-DL and the reasoning engines

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter ≐ ..using hasChild, Female..
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Composite roles

• Similar to composite concepts, e.g.:

– holdsPresidency  hasParty≐ - o presidentOf

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Not all supported by OWL-DL and the reasoning engines

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter  (hasChild | Female)≐
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Putting it together

• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.DebunkedContent

• VerifyingSource ≐  ∃ hasSource-.VerifiedContent  
   ⊓ ∀ hasSource-.VerifiedContent

An acyclic, 
definitional TBox
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Putting it together

• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.DebunkedContent

• VerifyingSource ≐  ∃ hasSource-.VerifiedContent  
   ⊓ ∀ hasSource-.VerifiedContent

Acyclic and 
unequivocal!

Concept expressions
of atomic concepts

Defined concepts



(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

Expanded definitional TBox

• Acyclicity: no cyclic definitions in the TBox (“Terminology Box”)

• Unequivocality: each named defined term is 
only used on the l.h.s. of a single definition

• Concept expansion:
• every concept can be written as an expression of 

only atomic concepts
• algorithm:

• start with the expression that defines the concept
• recursively replace all the defined concepts used 

in the expression with their definitions
• halt when only atomic concepts remain



Expanded definitional TBox

• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.
 debunked∃ By.FactChecker

• VerifyingSource ≐  ∃ hasSource-.
 ∃ verifiedBy.FactChecker

 ⊓ ∀ hasSource-.
 ∃ verifiedBy.FactChecker

Only basic concepts on 
the right hand sides!
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Types of axioms
• Terminology axioms (TBox)

– subsumptions:  C ⊑ D
– equivalences: C ≡ D

corresponds to: C ⊑ D, D ⊑ C
• Role axioms (RBox)

• e.g., subsumptions: R  S⊑
• Individual assertion axioms (ABox)

– class assertions:  a:C
– role assertions:  <a,b>:R

• Knowledge base K = (  T, A  )   or  K = (  T, R, A  ) 

C and D are expressions!

a and b are individuals.
R and S are roles!
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Decision
Problems
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Reasoning over knowledge bases
• What more can we do with ontologies?

• For example:
– given a source ontology that describes media content along with its 

sources and trustworthiness
– we can answer questions like, e.g.:

– is trusted content a type of content?
– can content be both verified and debunked?
– is all verified content trusted?

– competency questions are what we want an ontology to answer
– DL offers a clear and compact way or representing 

and reasoning about questions such as these!
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Decision problems
• A computational problem with a yes/no answer, e.g.

– is C subsumed by D? K  C  D⊨ ⊑

– are C and D consistent?  K  a:(⊨ C ⊓ D)

– are C and D equivalent?  K  ⊨ C ≡ D

– are C and D disjoint? K  ⊨ C  D  ⊓ ⊑ ⊥

– does a belong to C: K  a:C⊨  ?
– is a R-related to b: K  <a,b>:R⊨  ?

• Given a knowledge base K  , reasoning engines can give yes / no answers
• ...but not all decision problems are decidable
• ...or have tractable complexity
• depends on the expressions used!

C and D are
 classes,

a and b are 
individuals.
R is a role!
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Decision problems in practice
• Description logic is implemented by reasoning engines/OWL reasoner

– e.g., HermiT and Pellet
– distinct from inference engines, such as OWL-RL

• Protegé-OWL 
– comes with HermiT, more plugins can be installed

• Solves decision problems, e.g., 
– classifiy individuals
– find subclass relationships (subsumptions)
– find unsatisfiable classes (concepts)
– detect inconsistencies



Manchester OWL
syntax
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Manchester OWL-syntax
• A simple DL notation without special symbols

– used by Protege-OWL to construct classes

– similar to DL syntax

• Class: InternalCensor
EquivalentTo: Censor and Employee

• Class: ExternalCensor
EquivalentTo: Censor and not Employee

• Class: Agent
EquivalentTo: Person or Organisation or Group

• Can be used to serialise complete ontologies

– ...we will look mostly at TBox expressions

• http://www.w3.org/TR/owl2-manchester-syntax/
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Comparison
• DL:

ExternalCensor  Censor  ¬≐ ⊓ Employee

• Machester OWL:
Class: ExternalCensor

EquivalentTo: Censor and not Employee

• Turtle:
uib:ExternalCensor owl:equivalentClass

owl:intersectionOf ( 
uib:Censor
[ a owl:Class ;
  owl:complementOf uib:Employee
]

) .
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Roles in Manchester OWL syntax
• Class: President

EquivalentTo: 
Person and presidentOf some owl:Thing

• Class: USPresident
EquivalentTo: 
Person and presidentOf some UnitedStates

• Class: Independent
EquivalentTo: 
Person and not hasParty some owl:Thing

– universal concept (top): owl:Thing

– existential restriction: some
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Null concept in Manchester OWL syntax
• Class: <class-name>

EquivalentTo: Person and Group
SubClassOf: owl:Nothing

– null concept (bottom): owl:Nothing

– subsumption (subconcept): SubClassOf:

– equivalence: EquivalentTo:

• ...used both for definitions and for 
axioms



(c) Andreas L Opdahl, 2023 INFO216: Knowledge Graphs

More roles in Manchester OWL syntax
• Class: LoyalRepublican

EquivalentTo: 
Person and hasParty only RepublicanParty

– value restriction: only

• Class: Monotheist
EquivalentTo: Person and 

  believesInDeity exactly 1

• Class: Polygamist
EquivalentTo: hasSpouse min 3

– number restriction: exactly, min, max

• Class: Narcissist
EquivalentTo: loves some Self
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Inverse, symmetric and transitive roles
• Class: StrayDog

EquivalentTo: Dog and not inverse hasOwner some Person

• Class: hasParent
EquivalentTo: inverse hasChild

• ObjectProperty: hasSibling
Characteristics: Symmetric

• ObjectProperty: hasAncestor
Characteristics: Transitive

• inverse role: inverse

• symmetric role: 
Characteristics: SymmetricProperty

• transitive role: 
Characteristics: TransitiveProperty



After Easter:
Graph Embeddings
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