Welcome to INFO216: Knowledge Graphs Spring 2023

Andreas L Opdahl <Andreas.Opdahl@uib.no>

Session 11: Graph embeddings

- Themes:
 - KGs and machine learning (ML)
 - what are embeddings?
 - word embeddings
 - how to find and use them
 - other types of embeddings
 - what are graph embeddings?
 - how to find them...
 - ...and what to use them for

INFO216: Knowledge Graphs

Readings

- Resources in the wiki <http://wiki.uib.no/info216>:
 - Introduction to Machine Learning
 - Introduction to Word Embeddings
 - Introduction to Knowledge Graph Embeddings
- Supplementary (links in the wiki):
 - Mikolov et al's original word2vec paper
 - Bordes et al's original TransE paper
 - TorchKGE documentation (for the labs):
 - https://torchkge.readthedocs.io/en/latest/index.html

towards data science

INFO216: Knowledge Graphs

KGs and Machine Learning (ML)

What are the connections?

- Knowledge graphs are well matched with machine learning!
- Preparing inputs to ML (varying origins, formats, modalities...)
 - also managing outputs from ML / DL
- Infusing world knowledge into ML / DL
 - common sense knowledge, world knowledge (domain and general), ...
- As a native ML technique

INFO216: Knowledge Graphs

A micro-introduction to machine learning (ML)

- Sole purpose: to be able to understand and use KG embeddings
- How to make computers do useful things based on examples (training data) Supervised learning:
 - training materials comprise input-output value pairs as examples
- Unsupervised learning:
 - training materials comprise only input examples
- Several other variants: semi-supervised, reinforcement learning, ...
- Learning KG (and other) embeddings is often *unsupervised*
 - but also many supervised possibilities

INFO216: Knowledge Graphs

Train, evaluate, and test

- Training examples can be split in three:
 - training data are used to train the model
 - validation data are used to optimise hyper-parameters and monitor progress
 - test data are used only for final evaluation
 - 60%-20%-20% or 80%-10%-10% split is common
 - also minimum requirements for test examples
- *k-fold cross-validation:*
 - training and validation data are split in k folds
 - k-1 folds are used for training, 1 for validation
 - repeated k times for each validation fold
 - finally, the measures are averaged

INFO216: Knowledge Graphs

Epochs and batches

- We can go through the training data many times
 - each go-through is an epoch
- We can go through the training examples in groups
 - each group is called a *batch*
- Each example creates a loss
 - a numeric difference between the actual and the "correct" result
- So:
 - training consists of many epochs
 - each epoch consists of many batches
 - each batch consists of many training examples
 - each training example creates a loss
 - after each batch, steps are taken to minimise future loss

INFO216: Knowledge Graphs

Evaluation measures

- Results without ranking:
 - accuracy (A): ratio of correct results
 - there are lots of others:
 - precision (P), recall (R), F1 = 2PR/(P+R), ...
- Ranked results:
 - Hit@n: number of correct results in the "top n", e.g., Hit@10
 - Mean Rank: average rank of the correct results
 - Mean Reciprocal Rank (MRR): average inverse rank of the correct results, example:
 - the correct results have rank 1, 3, 28
 - MRR = (1/1 + 1/3 + 1/28) / 3
- Other measures for other data types, e.g., time series data

INFO216: Knowledge Graphs

Under- and overfitting

- Underfitting:
 - we have not trained for long enough, too few epochs
 - there is more to learn from the training data
 - high and decreasing loss, validation measures (like A) still improving
- Overfitting:
 - we have trained for too long, too many epocs
 - the model has specialised on the training data
 - low and decreasing loss, validation measures (like A) becoming worse

INFO216: Knowledge Graphs

Underfitting and overfitting

An underfitted model

Doesn't capture any logic

- High loss
- Low accuracy

A good model

Captures the underlying logic of the dataset

- Low loss
- High accuracy

An **overfitted** model

Captures all the noise, thus "missed the point"

365 **V**DataScience

- Low loss
- Low accuracy

https://365datascience.com/tutorials/machine-learning-tutorials/overfitting-underfitting/

What are embeddings?

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)
- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)

[blue,

medium,

0]

[violet,

small,

1]

[red,

large,

21

[red,

small,

3]

[green,

large,

4]

- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!
- Example:
 - FlowerWorld™
 - "Everything is a flower!"
 - a flower has three attributes:
 - colour
 - size
 - position

Everything in FlowerWorld™ can be uniquely described by its position along three dimensions!

[blue,

small,

51

[red,

medium,

6]

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)
- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!
- (Our conceptualisations of) Things in the "real world":
 - a bit more complex...
 - not fully describable by positions along dimensions
 - but perhaps we can describe them usefully by adding more dimensions?
 - but which dimensions to add?
 - use machine learning / neural networks to analyse large text corpora!

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)
- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)
- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!
 - [0.01 0.62 0.03 ... 0.41]
 - similar words are close to one another
 - relative positions between words can be systematic
 - [Paris] [France] + [Italy] ≈ [Rome]
 - distances between words can represent relations
 - [J. K. Rowling] + [influenced by] ≈ [J. R. R. Tolkien]
- Important use: as inputs to deep neural networks that process NL text

INFO216: Knowledge Graphs

- CBOW (Continuous Bag of Words):
 - part of word2vec
 - neural network with one hidden layer
 - trained on large corpus of NL text (1.6 billion words)
 - input examples: sentences with one word missing
 - expected output: the missing word
 - the weights in the neural network are used as word vectors
- Also: Skip-gram, GloVe, FastText, ...
- Ubiquitous as inputs to deep neural networks that process NL text

CBOW

- CBOW (Continuous Bag of Words):
 - part of word2vec
 - neural network with one hidden layer
 - trained on large corpus of NL text (1.6 billion words)
 - input examples: sentences with one word missing
 - expected output: the missing word
 - the weights in the neural network are used as word vectors
- Also: Skip-gram, GloVe, FastText, ...
- Ubiquitous as inputs to deep neural networks that process NL text

CBOW

- CBOW (Continuous Bag of Words):
 - part of word2vec
 - neural network with one hidden layer
 - trained on large corpus of NL text (1.6 billion words)
 - input examples: sentences with one word missing
 - expected output: the missing word
 - the weights in the neural network are used as word vectors
- Also: Skip-gram, GloVe, FastText, ...
- Ubiquitous as inputs to deep neural networks that process NL text

CBOW

Word similarity

- Extremely powerful and much used, *but be careful*
- The distributional hypothesis:
 - "words that occur in the same contexts tend to have similar meanings" (Harris 1954)
 - hence, word similarity can be measured in terms of vector similarity
 - this is not true in general
 - synonyms will often appear close to the same words
 - but so will many antonyms ("love", "hate")
 - syntagmatic similarity:

the words are able to combine in sentences with the same other words

– paradigmatic similarity:

the words can be substituted with one another

INFO216: Knowledge Graphs

Other types of embeddings

- The idea has caught on:
 - phrase embeddings ("baseball bat", "linear algebra", ...)
 - word piece embeddings ([lin-] + [-ear], [al-] + [-ge-]+ [-bra])
- Contextual embeddings (ELMo):
 - how to deal with words that are
 - homonymous (different words that look/sound the same)
 - polysemous (same word form has several meanings)
 - words have different embeddings in different neighbourhoods
- Sentence and paragraph embeddings:
 - transformer models with attention:
 - ChatGPT, GPT-4...
- Graph embeddings!

(c) Andreas L Opdahl, 2023

INFO216: Knowledge Graphs

What are graph embeddings?

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph like ConceptNet)
- Formally (e.g., adding axioms to a RDFS vocabulary or OWL ontology)
- As vectors in a latent semantic space!
 - node vectors
 - edge vectors
 - graph vectors

INFO216: Knowledge Graphs

What can we do with graph embeddings?

- Graph completion and validation:
 - node classification: given a node which type should it have?
 - link prediction: given a node and a edge, what should be at the end?
 - relation prediction: given two nodes, which edge type should link them?
 - triple classification: given two nodes and an edge, is the triple correct?
- Graph (or sub-graph) classification:
 - what type of entity/situation/event does the graph represent?
 - which class does the graph represent?
- Input to deep networks:
 - perhaps in combination with text, images, ...
 - deep multi-stream networks
 - early or late fusion of streams

INFO216: Knowledge Graphs

- Early and simple example:
 - Deepwalk (2014)
- Algorithm:
 - 1) drop a marker randomly onto a graph node
 - 2) let the marker traverse the graph randomly along edges for *n* steps
 - additional parameters can guide traversal
 - 3) treat each resulting walk of *n* nodes as a sentence of *n* words

4) feed a corpus of *n*-node walks into CBOW or similar

- Instead of a vector for each word, this produces a vector for each node
- Limitations:
 - all relations are equal
 - sampling may not fully exploit graph structure

INFO216: Knowledge Graphs

Translational embeddings (TransE)

- The translational property:
 - if (h, r, t) \in KG, then [h] + [r] \approx [t]
- Approach:
 - start out with random vectors for nodes and edges
 - repeat:
 - for each (h, r, t) ε KG, generate corrupted (h', r, t') that is *not* in KG (because either h' or t' is changed)
 - · adjust vectors to
 - minimise dist([h] + [r], [t])
 - maximise dist([h'] + [r], [t'])
 - loss is L = γ + *dist*([h] + [r], [t]) *dist*([h'] + [r], [t'])

INFO216: Knowledge Graphs

TransE is a simple example with a few known problems... There are many other models

Evaluation

- Link prediction:
 - h + r ≈ which t?
 - MRR, Mean Rank, Hit@n (@10).
 - filtered and raw variants
- Relation prediction:
 - $-h-t \approx$ which r?
 - MRR, Mean Rank, Hit@n (@10).
 - filtered and raw variants
- Relation classification:
 - are (h, t, r) and (h', t, r') in KG?
 - accuracy (A)

INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

INFO216: Knowledge Graphs

Datasets and pre-trained models

- Datasets:
 - Freebase extract (FB15k)
 - WordNet synsets (WN)
 - both have problems with training/validation/test overlap:

DATA SET	WN	FB15K	FB1M
ENTITIES	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10^{6}
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

- use FB15k237 and WN18RR instead
- Pre-trained models:
 - for example TransE already trained on FB15k237

INFO216: Knowledge Graphs

Limitations

- *TransE* is powerful and simple, but has limitations:
 - works best for 1-1 relations
 - trained on corrupted (h', r, t) and (h, r, t') variants, but never (h, r', t)
 - therefore bad on relation prediction
 - several derivations:
 - TransH, TransR, TransD, TorusE, ...
 - more recent developments:
 - Graph Neural Netwoks (GNNs)
 - e.g., Graph Convolutional Networks (CGNs)
 - combine ideas from:
 - Convolutional/Recurrent Neural Networks (CNNs/RNNs)
 - big graph databases

INFO216: Knowledge Graphs

Next week: Enterprise KGs II