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Session S13: OWL DL
Themes:

– description logic

– decision problems

– OWL DL

– Manchester OWL-syntax

• Practical stuff:

– perhaps Jena's OntModel class

– we skip Protege-OWL 3 programming



Readings

• Forum links (cursory):

– http://www.w3.org/TR/owl2-primer/

• show: Turtle and Manchester syntax

• hide: other syntaxes

– Description Logic Handbook:

• Chapter 1: Nardi & Brachman:
Introduction to Description Logics

• Chapter 2: Baader & Nutt:
Formal Description Logics (gets hard)



Description Logic
(DL)



Description logics (perhaps from INFO100?)

• Description Logic (DL)
– a simple fragment of predicate logic

• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)

– but (can have) good decision problems, i.e.,

• it answers decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL

– can be used to:

• describe concepts and their roles (“Tbox”)

• describe individuals and their roles (“ABox”)



Relationship to other logics

• Proposition logics are about statements (propositions):
“Martha is a Woman” ⇐ 

“Martha is Human”  “Martha is Female”⋀

• (First order) predicate logics are about predicates and objects:

– ∀x.(Woman(x) ⇔ Human(x)  Female(x))⋀

• Description logics are about concepts:

– Woman  Human  Female≐ ⊓

– ...and also roles and individuals

• There are many other logic systems:

– modal logics: necessarily □, possibly ◊

– temporal logics: always □, sometimes ◊, next time ○



Definition of concepts (“begreper”)

• Woman  Human  Female≐ ⊓

• Man  Human  ¬Woman≐ ⊓

• Parent  Mother  Father≐ ⊔

– concepts: Male, Human, Father, Mother...

– definition: ≐

– conjuction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ ??



Definition of concepts (“begreper”)

• Woman  Human  Female≐ ⊓

• Man  Human  ¬Woman≐ ⊓

• Parent  Mother  Father≐ ⊔

– concepts: Male, Human, Father, Mother...

– definition: ≐

– conjuction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ Human  ¬Parent⊓



Atomic and defined concepts and roles

• Atomic concepts are given

– corresponds to OWL-NamedClasses that are
not composed from other classes

• Defined concepts

– corresponds to OWL-NamedClasses that are
composed from other classes

– defined by concept expressions

– appear on the left side of ≐ axioms

• Similar distinction between atomic and defined roles



Roles

• Mother  Female  ∃hasChild.≐ ⊓ ⊤

• Bachelor  Male  ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle  Male  ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ ??

• Grandparent ≐ ..((w/o Mother & Father))..

• Uncle ≐ ..((without Parent))..
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– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ Human  ∃hasChild.Parent⊓

• Grandparent ≐ ..((w/o Mother & Father))..

• Uncle ≐ ..((without Parent))..



Roles

• Mother  Female  ∃hasChild.≐ ⊓ ⊤
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• Uncle ≐ ..((without Parent))..



Roles

• Mother  Female  ∃hasChild.≐ ⊓ ⊤

• Bachelor  Male  ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle  Male  ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ Human  ∃hasChild.Parent⊓

• Grandparent ≐ Human ⊓
 ∃hasChild.∃hasChild.⊤

• Uncle  Male  ∃hasSibling.∃hasChild.≐ ⊓ ⊤



Null concept

• Male  Female  ⊥⊓ ⊑

– null concept (“bottom”): ⊥

– subsumption (sub concept): ⊑

– equivalence: ≡

• ≐ is used for definitions (or just ≡)

• ≡ are used for equivalence axioms

• ⊑ are used for specialisation axioms

• This was our first axiom!

– so far we have just defined concepts

– we have not used them in axioms

• Note the use of ...  ⊥⊑  (“subsumption of bottom”)

– to say that something is not the case



More about roles

• HappyFather  Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne  Mother  (=1 hasChild. )≐ ⊓ ⊤

• Polygamist  (≥3 hasSpouse. )≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist  ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer ≐ ??

• SelfHater ≐ ??



More about roles

• HappyFather  Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne  Mother  (=1 hasChild. )≐ ⊓ ⊤

• Polygamist  (≥3 hasSpouse. )≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist  ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer  (≥4 hasKilled).Human≐

• SelfHater ≐ ??



More about roles

• HappyFather  Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne  Mother  (=1 hasChild. )≐ ⊓ ⊤

• Polygamist  (≥3 hasSpouse. )≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist  ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer  (≥4 hasKilled).Human≐

• SelfHater  ∃haterOf.≐ Self



Inverse and transitive roles

• Child  Human  ∃hasChild≐ ⊓ -.⊤
• hasParent  hasChild≐ -

• hasSibling  hasSibling≐ -

• BlueBlood  ∀hasParent≐ *.BlueBlood

– inverse role: hasChild-

– symmetric role: hasSibling-

– transitive role: hasParent*

• Niece ≐ ??



Inverse and transitive roles

• Child  Human  ∃hasChild≐ ⊓ -.⊤
• hasParent  hasChild≐ -

• hasSibling  hasSibling≐ -

• BlueBlood  ∀hasParent≐ *.BlueBlood

– inverse role: hasChild-

– symmetric role: hasSibling-

– transitive role: hasParent*

• Niece ≐ Human  ∃hasChild⊓ -.hasSibling.⊤
• We are starting to define roles

– so far, we have only defined concepts



Composite roles

• Similar to composite concepts, e.g.:

– hasUncle  hasParent o hasBrother≐

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Mostly not supported by reasoning engines

– they have “bad decision problems”
• meaning that they compute slowly or 

intractably
– ...with some exceptions

• hasDaughter ≐ ??

• halfSibling ≐ ??



Composite roles

• Similar to composite concepts, e.g.:

– hasUncle  hasParent o hasBrother≐

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Mostly not supported by reasoning engines

– they have “bad decision problems”
• meaning that they compute slowly or 

intractably
– ...with some exceptions

• hasDaughter  (hasChild | Female)≐

• halfSibling ≐ ??



TBox

• Terminology box (TBox):
– a collection of axioms about concepts and properties

– axioms are definitions, equivalences or subsumptions

– definitions (≐): atomic concept on the left hand side 
(l.h.s.)

– equivalence (≡): concept expressions on both sides

– subsumption (⊑): concept expressions on both sides

• Acyclic TBoxes:
– contains only definitions

– every defined concept (or role) can be expanded into an 
expression of only atomic concepts (or roles)

• Expanded concepts (or roles)
– defined only in terms of atomic concepts (and roles)



Statements about individuals

• So far we have defined concepts and roles (TBox)

• We have two types of axioms about individuals (ABox):

– class assertion (using a concept):
Märtha : Female  Royal⊓

– role assertion (using a role):
<Märtha, EmmaTallulah> : hasChild
<Märtha, HaakonMagnus> : hasBrother

• Axioms about concepts/roles and assertions about 
individuals/roles are used to create knowledge bases:

– concepts, roles in the TBox (“the tags”)

– individuals, roles in the ABox (“the tagged data”)



Syntaxes differ a bit...

• So far we have defined concepts and roles (TBox)

• We have two types of axioms about individuals (ABox):

– class assertion (using a concept):
Female(Märtha),(Female  Royal)(Märtha)⊓

– role assertion (using a role):
hasChild(Märtha, EmmaTallulah)
hasBrother(Märtha, HaakonMagnus)

• Axioms about concepts/roles and assertions about 
individuals/roles are used to create knowledge bases:

– concepts, roles in the TBox (“the tags”)

– individuals, roles in the ABox (“the tagged data”)



Types of axioms

• Terminology axioms (in the TBox):

– subsumptions:  C ⊑ D

– equivalences: C ≡ D
corresponds to: C ⊑ D, D ⊑ C

– definitions: A ≐ C
• Individual assertions (in the ABox):

– class assertions:  a:C

– role assertions:  <a,b>:R

• A knowledge base K = ( T, A  )  consists of

– TBox: T and ABox: A

C and D are classes,
A is an atomic class!

a and b are individuals.
R is a role!



Decision
Problems



Reasoning over knowledge bases

• What more can we do with ontologies?
• For example:

– a security ontology that describes an organisation and its 
computer systems as concepts, roles and individuals

– can answer competency questions, e.g.:
• are all the security levels subclasses of one another?

• what is the highest security level of a temporary?

• what is the necessary security level of a component?

• which employees have access to critical data?

• for which security roles is an employee qualified?

• which individuals are suspicious persons?

– DL offers a clear and compact way or representing and 
reasoning about questions such as these!



Decision problems

• A computational problem with a yes/no answer, e.g.

– is C subsumed by D (K  ⊨ C ⊑ D)?

– are C and D consistent (K  ⊨ C ⊓ D)?

– does a belong to C (K  a:C⊨ )?

– is a R-related to b (K  <a,b>:R⊨ )?

• Decidability (“bestembarhet”):
– we can always calculate the yes/no answer in finite time

• Semi-decidability (“semibestembarhet”):
– we can always calculate a yes-answer in finite time,

...but not always a no-answer

• Undecidability (“ubestembarhet”):
– we cannot always calculate the answer in finite time

C and D are
 classes,

a and b are 
individuals.
R is a role!



Decision problems for concepts

• There are four basic decision problems for concepts:

– consistency: whether there is an individual a so that
T  a:C⊨ , 

T  C  ⊥⊭ ⊑

– subsumption: T  C  D⊨ ⊑ , 

T  C  ¬D  ⊥⊨ ⊓ ⊑

– equivalence: T  C ≡ D⊨   or C ≡T D,

T  C  D, D  C⊨ ⊑ ⊑

– disjunction: T  C  D  ⊥⊨ ⊓ ⊑
• All four can be reduced to subsumption or consistency!

• T can be emptied, by expanding all its concepts



Decision problems for individuals

• Decision problems for individuals and roles:

– instance checking: A  a:C⊨ , 

 ⊭ A    ¬(a:C)⊓
is individual a member of class C?

– role checking:  A  <a,b>:R⊨ , 

 ⊭ A    ¬(<a,b>:R⊓ )

is individual a R-related to individual b?

– classifications (not yes/no):
to which classes does a belong?
all individuals of class C?

• All boil down to consistency checking for ABoxes
• ...under certain (rather weak) conditions



Complexity

• Decidability is often necessary

– but not enough

– we also want a decision “in reasonable time”

– different DL-variants have different complexity

– many different complexity classes

• polynomial (P), exponential (EXP)...

• ...in time and space

• Tractable (or feasible) complexity

– acceptable complexity for large knowledge bases
– typically polynomial complexity (P)
– complexity grows O(nc) of problem size n



EXPTIME, 
NEXPTIME,
EXPSPACE

P, NP, PSPACE



DL-complexity

• We have presented many DL-notations

– do not use all at the same time!

– that gives high complexity

– which is why we have different OWL Profiles

• Complexity calculator on the net:

– Complexity of reasoning in Description Logics
http://www.cs.man.ac.uk/~ezolin/dl/



OWL DL



Relation to OWL

• OWL DL and description logic are closely matched
– everything in OWL DL has a DL-counterpart

– most everything in DL can be expressed in OWL DL

• DL is a family of logic systems:
– some of them correspond to particular OWL profiles

– OWL1 DL: S H O I N ( D )

– OWL2 DL: S R O I Q ( D )



OWL profiles revisited

• OWL “1” (2002):
– OWL Full – “anything goes”

– OWL DL – fragment of OWL Full,

• formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):
– OWL2 Full – “anything goes”

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

– OWL2 DL – has three further fragments:

• OWL2 EL – quick reasoning, fragment of OWL2 DL

• OWL2 RL – rule language, fragment of OWL2 DL

• OWL2 QL – query language, fragment of OWL2 DL



And there is more...

• A few other constructions

• Formal definitions of

– syntax (rules for valid expressions, reasoning)

– semantics (rules for interpreting expressions)

• Tools and techniques

• Lots of applications



Protege-OWL



Protege-OWL

• Extension of Protegé

– ordinary Protegé supports frames

– Protegé-OWL

• reuses much of the Protege-Frames GUI



Protege-OWL 3.x

• Supports OWL 1.1:

– uses Jena internally

– wraps Jena's API with a Protege-OWL API 

• stays with Jena's graph metaphor

• you “create the ontology as a graph”

– many plug-ins:

• SWRL, Jess, reasoning...

– still actively developed



Protege-OWL 4.x, 5 beta

• Supports OWL 2:

– complete reimplementation of internals
– not based on Jena
– offers a dedicated OWL API (in Java)

• description-logic metaphor

• your “build the ontology from axioms”

– more and more plug-ins

– still actively developed



Manchester OWL
syntax



Manchester OWL-syntax

• A simple DL notation without special symbols

– used by Protege-OWL to construct classes

– similar to DL syntax

• Class: Woman
EquivalentTo: Human and Female

• Class: Man
EquivalentTo: Human and not Female

• Class: Parent
EquivalentTo: Mother or Father

• Can be used to serialise complete ontologies

– ...we will look mostly at Tbox expressions

• http://www.w3.org/TR/owl2-manchester-syntax/



Comparison

• DL:
Male  Human  ¬Female≐ ⊓

• Machester OWL:
Class: Man

EquivalentTo: Human and not Female

• TURTLE:
family:Man owl:equivalentClass

owl:intersectionOf ( 
family:Human
[ a owl:Class ;
  owl:complementOf family:Woman
]

) .



Roles in Manchester OWL syntax

• Class: Mother
EquivalentTo: 
Female and hasChild some owl:Thing

• Class: Bachelor
EquivalentTo: 
Male and not hasSpouse some owl:Thing

• Class: Uncle
EquivalentTo: 
Male and hasSibling some Parent

– universal concept (top): owl:Thing

– existential restriction: some



Null concept in Manchester OWL syntax

• Class: <class-name>
EquivalentTo: Male and Female
SubClassOf: owl:Nothing

– null concept (bottom): owl:Nothing

– subsumption (subconcept): SubClassOf:

– equivalence: EquivalentTo:

• ...used both for definitions and 
for axioms



More roles in Manchester OWL syntax

• Class: HappyFather
EquivalentTo: 
Father and hasChild only Happy

– value restriction: only

• Class: MotherOfOne
EquivalentTo: Mother and 

hasChild exactly 1

• Class: Bigamist
EquivalentTo: hasSpouse min 2

– number restriction: exactly, min, max

• Class: Narcissist
EquivalentTo: loves some Self



Inverse, symmetric and transitive roles

• Class: Child
EquivalentTo: 
Human and inverse hasChild some owl:Thing

• Class: hasParent
EquivalentTo: inverse hasChild

• ObjectProperty: hasSibling
Characteristic: Symmetric

• ObjectProperty: hasAncestor
Characteristic: Transitive

• inverse role: inverse

– symmetric role: 
Characteristic: SymmetricProperty

– transitive role: 
Characteristic: TransitiveProperty
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