
INFO216:
Advanced Modelling

Theme, spring 2017:
Modelling and Programming

the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

Session S13: OWL DL
Themes:

– description logic

– decision problems

– OWL DL

– Manchester OWL-syntax

• Practical stuff:

– perhaps Jena's OntModel class

– we skip Protege-OWL 3 programming

Readings

• Forum links (cursory):

– http://www.w3.org/TR/owl2-primer/

• show: Turtle and Manchester syntax

• hide: other syntaxes

– Description Logic Handbook:

• Chapter 1: Nardi & Brachman:
Introduction to Description Logics

• Chapter 2: Baader & Nutt:
Formal Description Logics (gets hard)

Description Logic
(DL)

Description logics (perhaps from INFO100?)

• Description Logic (DL)
– a simple fragment of predicate logic

• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)

– but (can have) good decision problems, i.e.,

• it answers decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL

– can be used to:

• describe concepts and their roles (“Tbox”)

• describe individuals and their roles (“ABox”)

Relationship to other logics

• Proposition logics are about statements (propositions):
“Martha is a Woman” ⇐

“Martha is Human” “Martha is Female”⋀

• (First order) predicate logics are about predicates and objects:

– ∀x.(Woman(x) ⇔ Human(x) Female(x))⋀

• Description logics are about concepts:

– Woman Human Female≐ ⊓

– ...and also roles and individuals

• There are many other logic systems:

– modal logics: necessarily □, possibly ◊

– temporal logics: always □, sometimes ◊, next time ○

Definition of concepts (“begreper”)

• Woman Human Female≐ ⊓

• Man Human ¬Woman≐ ⊓

• Parent Mother Father≐ ⊔

– concepts: Male, Human, Father, Mother...

– definition: ≐

– conjuction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ ??

Definition of concepts (“begreper”)

• Woman Human Female≐ ⊓

• Man Human ¬Woman≐ ⊓

• Parent Mother Father≐ ⊔

– concepts: Male, Human, Father, Mother...

– definition: ≐

– conjuction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ Human ¬Parent⊓

Atomic and defined concepts and roles

• Atomic concepts are given

– corresponds to OWL-NamedClasses that are
not composed from other classes

• Defined concepts

– corresponds to OWL-NamedClasses that are
composed from other classes

– defined by concept expressions

– appear on the left side of ≐ axioms

• Similar distinction between atomic and defined roles

Roles

• Mother Female ∃hasChild.≐ ⊓ ⊤

• Bachelor Male ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle Male ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ ??

• Grandparent ≐ ..((w/o Mother & Father))..

• Uncle ≐ ..((without Parent))..

Roles

• Mother Female ∃hasChild.≐ ⊓ ⊤

• Bachelor Male ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle Male ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ Human ∃hasChild.Parent⊓

• Grandparent ≐ ..((w/o Mother & Father))..

• Uncle ≐ ..((without Parent))..

Roles

• Mother Female ∃hasChild.≐ ⊓ ⊤

• Bachelor Male ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle Male ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ Human ∃hasChild.Parent⊓

• Grandparent ≐ Human ⊓
 ∃hasChild.∃hasChild.⊤

• Uncle ≐ ..((without Parent))..

Roles

• Mother Female ∃hasChild.≐ ⊓ ⊤

• Bachelor Male ¬∃hasSpouse.≐ ⊓ ⊤

• Uncle Male ∃hasSibling.Parent≐ ⊓

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤

– existential restriction: ∃

• Grandparent ≐ Human ∃hasChild.Parent⊓

• Grandparent ≐ Human ⊓
 ∃hasChild.∃hasChild.⊤

• Uncle Male ∃hasSibling.∃hasChild.≐ ⊓ ⊤

Null concept

• Male Female ⊥⊓ ⊑

– null concept (“bottom”): ⊥

– subsumption (sub concept): ⊑

– equivalence: ≡

• ≐ is used for definitions (or just ≡)

• ≡ are used for equivalence axioms

• ⊑ are used for specialisation axioms

• This was our first axiom!

– so far we have just defined concepts

– we have not used them in axioms

• Note the use of ... ⊥⊑ (“subsumption of bottom”)

– to say that something is not the case

More about roles

• HappyFather Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne Mother (=1 hasChild.)≐ ⊓ ⊤

• Polygamist (≥3 hasSpouse.)≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer ≐ ??

• SelfHater ≐ ??

More about roles

• HappyFather Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne Mother (=1 hasChild.)≐ ⊓ ⊤

• Polygamist (≥3 hasSpouse.)≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer (≥4 hasKilled).Human≐

• SelfHater ≐ ??

More about roles

• HappyFather Father ≐ ⊓
 ∀hasChild.HappyPerson

– universal value restriction: ∀

• MotherOfOne Mother (=1 hasChild.)≐ ⊓ ⊤

• Polygamist (≥3 hasSpouse.)≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist ∃hasLoveFor.≐ Self

– self references: Self

• MassMurderer (≥4 hasKilled).Human≐

• SelfHater ∃haterOf.≐ Self

Inverse and transitive roles

• Child Human ∃hasChild≐ ⊓ -.⊤
• hasParent hasChild≐ -

• hasSibling hasSibling≐ -

• BlueBlood ∀hasParent≐ *.BlueBlood

– inverse role: hasChild-

– symmetric role: hasSibling-

– transitive role: hasParent*

• Niece ≐ ??

Inverse and transitive roles

• Child Human ∃hasChild≐ ⊓ -.⊤
• hasParent hasChild≐ -

• hasSibling hasSibling≐ -

• BlueBlood ∀hasParent≐ *.BlueBlood

– inverse role: hasChild-

– symmetric role: hasSibling-

– transitive role: hasParent*

• Niece ≐ Human ∃hasChild⊓ -.hasSibling.⊤
• We are starting to define roles

– so far, we have only defined concepts

Composite roles

• Similar to composite concepts, e.g.:

– hasUncle hasParent o hasBrother≐

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Mostly not supported by reasoning engines

– they have “bad decision problems”
• meaning that they compute slowly or

intractably
– ...with some exceptions

• hasDaughter ≐ ??

• halfSibling ≐ ??

Composite roles

• Similar to composite concepts, e.g.:

– hasUncle hasParent o hasBrother≐

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Mostly not supported by reasoning engines

– they have “bad decision problems”
• meaning that they compute slowly or

intractably
– ...with some exceptions

• hasDaughter (hasChild | Female)≐

• halfSibling ≐ ??

TBox

• Terminology box (TBox):
– a collection of axioms about concepts and properties

– axioms are definitions, equivalences or subsumptions

– definitions (≐): atomic concept on the left hand side
(l.h.s.)

– equivalence (≡): concept expressions on both sides

– subsumption (⊑): concept expressions on both sides

• Acyclic TBoxes:
– contains only definitions

– every defined concept (or role) can be expanded into an
expression of only atomic concepts (or roles)

• Expanded concepts (or roles)
– defined only in terms of atomic concepts (and roles)

Statements about individuals

• So far we have defined concepts and roles (TBox)

• We have two types of axioms about individuals (ABox):

– class assertion (using a concept):
Märtha : Female Royal⊓

– role assertion (using a role):
<Märtha, EmmaTallulah> : hasChild
<Märtha, HaakonMagnus> : hasBrother

• Axioms about concepts/roles and assertions about
individuals/roles are used to create knowledge bases:

– concepts, roles in the TBox (“the tags”)

– individuals, roles in the ABox (“the tagged data”)

Syntaxes differ a bit...

• So far we have defined concepts and roles (TBox)

• We have two types of axioms about individuals (ABox):

– class assertion (using a concept):
Female(Märtha),(Female Royal)(Märtha)⊓

– role assertion (using a role):
hasChild(Märtha, EmmaTallulah)
hasBrother(Märtha, HaakonMagnus)

• Axioms about concepts/roles and assertions about
individuals/roles are used to create knowledge bases:

– concepts, roles in the TBox (“the tags”)

– individuals, roles in the ABox (“the tagged data”)

Types of axioms

• Terminology axioms (in the TBox):

– subsumptions: C ⊑ D

– equivalences: C ≡ D
corresponds to: C ⊑ D, D ⊑ C

– definitions: A ≐ C
• Individual assertions (in the ABox):

– class assertions: a:C

– role assertions: <a,b>:R

• A knowledge base K = (T, A) consists of

– TBox: T and ABox: A

C and D are classes,
A is an atomic class!

a and b are individuals.
R is a role!

Decision
Problems

Reasoning over knowledge bases

• What more can we do with ontologies?
• For example:

– a security ontology that describes an organisation and its
computer systems as concepts, roles and individuals

– can answer competency questions, e.g.:
• are all the security levels subclasses of one another?

• what is the highest security level of a temporary?

• what is the necessary security level of a component?

• which employees have access to critical data?

• for which security roles is an employee qualified?

• which individuals are suspicious persons?

– DL offers a clear and compact way or representing and
reasoning about questions such as these!

Decision problems

• A computational problem with a yes/no answer, e.g.

– is C subsumed by D (K ⊨ C ⊑ D)?

– are C and D consistent (K ⊨ C ⊓ D)?

– does a belong to C (K a:C⊨)?

– is a R-related to b (K <a,b>:R⊨)?

• Decidability (“bestembarhet”):
– we can always calculate the yes/no answer in finite time

• Semi-decidability (“semibestembarhet”):
– we can always calculate a yes-answer in finite time,

...but not always a no-answer

• Undecidability (“ubestembarhet”):
– we cannot always calculate the answer in finite time

C and D are
 classes,

a and b are
individuals.
R is a role!

Decision problems for concepts

• There are four basic decision problems for concepts:

– consistency: whether there is an individual a so that
T a:C⊨ ,

T C ⊥⊭ ⊑

– subsumption: T C D⊨ ⊑ ,

T C ¬D ⊥⊨ ⊓ ⊑

– equivalence: T C ≡ D⊨ or C ≡T D,

T C D, D C⊨ ⊑ ⊑

– disjunction: T C D ⊥⊨ ⊓ ⊑
• All four can be reduced to subsumption or consistency!

• T can be emptied, by expanding all its concepts

Decision problems for individuals

• Decision problems for individuals and roles:

– instance checking: A a:C⊨ ,

 ⊭ A ¬(a:C)⊓
is individual a member of class C?

– role checking: A <a,b>:R⊨ ,

 ⊭ A ¬(<a,b>:R⊓)

is individual a R-related to individual b?

– classifications (not yes/no):
to which classes does a belong?
all individuals of class C?

• All boil down to consistency checking for ABoxes
• ...under certain (rather weak) conditions

Complexity

• Decidability is often necessary

– but not enough

– we also want a decision “in reasonable time”

– different DL-variants have different complexity

– many different complexity classes

• polynomial (P), exponential (EXP)...

• ...in time and space

• Tractable (or feasible) complexity

– acceptable complexity for large knowledge bases
– typically polynomial complexity (P)
– complexity grows O(nc) of problem size n

EXPTIME,
NEXPTIME,
EXPSPACE

P, NP, PSPACE

DL-complexity

• We have presented many DL-notations

– do not use all at the same time!

– that gives high complexity

– which is why we have different OWL Profiles

• Complexity calculator on the net:

– Complexity of reasoning in Description Logics
http://www.cs.man.ac.uk/~ezolin/dl/

OWL DL

Relation to OWL

• OWL DL and description logic are closely matched
– everything in OWL DL has a DL-counterpart

– most everything in DL can be expressed in OWL DL

• DL is a family of logic systems:
– some of them correspond to particular OWL profiles

– OWL1 DL: S H O I N (D)

– OWL2 DL: S R O I Q (D)

OWL profiles revisited

• OWL “1” (2002):
– OWL Full – “anything goes”

– OWL DL – fragment of OWL Full,

• formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):
– OWL2 Full – “anything goes”

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

– OWL2 DL – has three further fragments:

• OWL2 EL – quick reasoning, fragment of OWL2 DL

• OWL2 RL – rule language, fragment of OWL2 DL

• OWL2 QL – query language, fragment of OWL2 DL

And there is more...

• A few other constructions

• Formal definitions of

– syntax (rules for valid expressions, reasoning)

– semantics (rules for interpreting expressions)

• Tools and techniques

• Lots of applications

Protege-OWL

Protege-OWL

• Extension of Protegé

– ordinary Protegé supports frames

– Protegé-OWL

• reuses much of the Protege-Frames GUI

Protege-OWL 3.x

• Supports OWL 1.1:

– uses Jena internally

– wraps Jena's API with a Protege-OWL API

• stays with Jena's graph metaphor

• you “create the ontology as a graph”

– many plug-ins:

• SWRL, Jess, reasoning...

– still actively developed

Protege-OWL 4.x, 5 beta

• Supports OWL 2:

– complete reimplementation of internals
– not based on Jena
– offers a dedicated OWL API (in Java)

• description-logic metaphor

• your “build the ontology from axioms”

– more and more plug-ins

– still actively developed

Manchester OWL
syntax

Manchester OWL-syntax

• A simple DL notation without special symbols

– used by Protege-OWL to construct classes

– similar to DL syntax

• Class: Woman
EquivalentTo: Human and Female

• Class: Man
EquivalentTo: Human and not Female

• Class: Parent
EquivalentTo: Mother or Father

• Can be used to serialise complete ontologies

– ...we will look mostly at Tbox expressions

• http://www.w3.org/TR/owl2-manchester-syntax/

Comparison

• DL:
Male Human ¬Female≐ ⊓

• Machester OWL:
Class: Man

EquivalentTo: Human and not Female

• TURTLE:
family:Man owl:equivalentClass

owl:intersectionOf (
family:Human
[a owl:Class ;
 owl:complementOf family:Woman
]

) .

Roles in Manchester OWL syntax

• Class: Mother
EquivalentTo:
Female and hasChild some owl:Thing

• Class: Bachelor
EquivalentTo:
Male and not hasSpouse some owl:Thing

• Class: Uncle
EquivalentTo:
Male and hasSibling some Parent

– universal concept (top): owl:Thing

– existential restriction: some

Null concept in Manchester OWL syntax

• Class: <class-name>
EquivalentTo: Male and Female
SubClassOf: owl:Nothing

– null concept (bottom): owl:Nothing

– subsumption (subconcept): SubClassOf:

– equivalence: EquivalentTo:

• ...used both for definitions and
for axioms

More roles in Manchester OWL syntax

• Class: HappyFather
EquivalentTo:
Father and hasChild only Happy

– value restriction: only

• Class: MotherOfOne
EquivalentTo: Mother and

hasChild exactly 1

• Class: Bigamist
EquivalentTo: hasSpouse min 2

– number restriction: exactly, min, max

• Class: Narcissist
EquivalentTo: loves some Self

Inverse, symmetric and transitive roles

• Class: Child
EquivalentTo:
Human and inverse hasChild some owl:Thing

• Class: hasParent
EquivalentTo: inverse hasChild

• ObjectProperty: hasSibling
Characteristic: Symmetric

• ObjectProperty: hasAncestor
Characteristic: Transitive

• inverse role: inverse

– symmetric role:
Characteristic: SymmetricProperty

– transitive role:
Characteristic: TransitiveProperty

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

