
INFO216:
Advanced Modelling

Theme, spring 2018:
Modelling and Programming

the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

Session S11 OWL
 Themes:

– restriction classes

– anatomy of OWL
– more examples of Turtle (+ Manchester Syntax)
– builds on S06: RDFS-Plus

• what and why?

• basic OWL constructs

• complex classes

• Themes for S12:
– rules, description logic, decision problems
– perhaps the OWL API and reasoners

Readings

• Allemang & Hendler (2011):
Semantic Web for the Working Ontologist
– chapter 11 (“Basic OWL”) and 12 (even more OWL!)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

Web Ontology
Language (OWL)

RDFS is a useful starting point... (S06)

• But there's lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 players, a VolleyballTeam only 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!

What does OWL offer? (S06)

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• certain OWL ontologies are also logical systems

– description logic (DL)

– OWL DL has good computational behaviours

• (appearance of) more powerful entailments

The Core
OWL Concepts

Classes, properties, and individuals

• Web Ontology Language (OWL):

– builds on RDF and RDFS (but not SKOS)
– uses classes and properties from RDF and RDFS
– adds precision and formality

• Basic OWL-concepts:

– owl:Class rdfs:subClassOf rdfs:Class .

– “owl:Property” rdfs:subClassOf “rdf:Property” .

– “owl:Individual” rdfs:subClassOf rdfs:Resource .
• good practice: keep these three disjoint, i.e., no

resource has more than one of them as rdf:type
• in OWL DL, this is a requirement...

Building blocks

• OWL 2 has three building blocks:
– entities:

• refer to real-world objects using IRIs

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty,
owl:AnnotationProperty, owl:ObjectProperty

– axioms:
• basic statements the OWL ontology expresses

• every triple in the RDF graph is an axiom

– expressions:
• combining simpler entities (classes, individuals, or

properties) to define more complex ones

• based on constructors

Building blocks

• OWL 2 has three building blocks:
– entities:

• refer to real-world objects using IRIs

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty,
owl:AnnotationProperty, owl:ObjectProperty

– axioms:
• basic statements the OWL ontology expresses

• every triple in the RDF graph is an axiom

– expressions:
• combining simpler entities (classes, individuals, or

properties) to define more complex ones

• based on constructors

← can be true or false!

Things and named individuals

• owl:Thing:
– is equivalent to rdfs:Resource

• owl:Nothing

– is the empty set

– no resource has it as its rdf:type

• owl:NamedIndividual
– is an owl:Thing with an IRI
– defined in OWL2 DL

Named and constructed classes

• owl:NamedClass (with an IRI):
– semantics are given by:

• IRI-s, labels and other annotations

• domain, range, subClassOf and other relationships

• Constructed (or complex) owl:Class:
– built from existing classes, properties, individuals

• which can be named or anonymous

– constructed classes are anonymous upon declaration,

• but can be named later

– unions, intersections and negations of existing classes

– restrictions on existing properties

– enumeration of existing individuals

Object and datatype properties

• RDF triples: object is either a resource or a literal
– OWL has two corresponding types of predicates

• owl:ObjectProperty:

– rdfs:range (“verdiområde”) is an OWL-class of
individuals

– corresponds to RDF triples with a resource object

• owl:DatatypeProperty:
– rdfs:range is an RDFS-datatype
– corresponds to RDF triples with a literal object

• rdfs:domain (“definisjonsmengden”) for OWL properties
is always an OWL-class of individuals

Annotation and ontology properties

• Annotation properties are used to annotate
– ontologies (e.g., version)
– entities (classes, individuals, properties) in the ont.

– axioms (triples) in the ontology

– for example: rdfs:comment...

• Ontology properties are used to manage ontologies
– for example: owl:imports...

• They have RDFS-semantics

• but no specific description logic (DL) semantics

• often not “counted” alongside object and datatype
properties

Summary: basic OWL types

• owl:Thing, owl:Nothing, owl:NamedIndividual
• owl:NamedClass, owl:Class
• owl:ObjectProperty, owl:DatatypeProperty

• owl:AnnotationProperty, owl:OntologyProperty

More precise properties in “RDFS Plus”

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (today!)

– chained properties, e.g.:
fam:hasGrandparent

owl:propertyChainAxiom (:hasParent :hasParent) .

Sameness and difference in “RDFS Plus”

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members

Complex OWL
classes

Enumeration classes

• An enumeration class is defined by exhaustively listing all its
member individuals, e.g.:

– cal:Season
a owl:Class ;

 owl:oneOf (cal:Spring ... cal:Winter) .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly

Enumeration classes

• An enumeration class is defined by exhaustively listing all its
member individuals, e.g.:

– cal:Season
a owl:Class ;

 owl:oneOf (cal:Spring ... cal:Winter) .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly

Other ways to write complex classes

• Why can also write:
cal:Season owl:equivalentClass [

a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter)] .

or (a weaker claim):
cal:Season owl:subClassOf [

a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter)] .

• Reason:

– sometimes we just need rdfs:subClassOf
• and it can be computationally more efficient

– owl:equivalentClass entails two-way rdfs:subClassOf

Union classes

• A union class contains all the individuals
in either of two or more other classes, e.g.,

– fam:Parent
a owl:Class;

 owl:unionOf (fam:Father fam:Mother) .

• Entailment rule:
– if C owl:equivalentClass owl:unionOf (C1... Cn) then

• C1 rdfs:subClassOf C Cn rdfs:subClassOf C .

• why not say just, e.g.,:

– fam:Father rdfs:subClassOf fam:Parent .

– fam:Mother rdfs:subClassOf fam:Parent .

?

Intersection classes

• An intersection class contains all the individuals
in all of two or more other classes, e.g.

– uib:StudentAssistant
a owl:Class;

 owl:intersectionOf (uib:Student uib:Teacher) .

• Entailment rule:

– if C owl:equivalentClass owl:intersectionOf (C1... Cn) then

• C rdfs:subClassOf C1 C rdfs:subClassOf Cn .

• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .

– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?

Complement classes

• A complement class contains all the individuals
that are not in another class:
– fam:Father

owl:intersectionOf (
fam:Parent
[owl:complementOf fam:Mother]

) .

Closed World Assumption (CWA)

• Whenever something is not explicitly stated in the ontology,
can we assume that the opposite is the case?

– DBpedia only lists three James Dean movies –
can we thus assume that he only played in three?

• Classical logic and many ICT languages assume so:

– this is the “Closed World Assumption” (CWA)

• In RDF and OWL, we do not assume that something is false
just because it is not stated

– this is the “Open World Assumption” (OWA)

Negated properties (OWL 2)

• A negated property states that a triple with a particular
subject, predicate and object would not correspond to a fact,
e.g.,

– [] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary .

– means that it is not correct that “Bill has Mary as his wife”

– an ontology with such a triple and its negation is
inconsistent

Negated properties (OWL 2)

• A negated property states that a triple with a particular
subject, predicate and object would not correspond to a fact,
e.g.,

• [] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary .

• [rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary] .

• The structure is similar to triple reification

Summary: complex classes

• owl:oneOf
• owl:unionOf
• owl:intersectionOf

• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual,

owl:assertionProperty, owl:targetIndividual

OWL restriction
classes

Property value restrictions

• Defining a class by a particular value on one of its
properties, e.g.:
– fam:Woman

a owl:Restriction ;
owl:onProperty fam:hasGender ;
owl:hasValue fam:Female .

– fam:Woman owl:intersectionOf (
fam:Person
[a owl:Restriction ;

owl:onProperty fam:hasGender ;
owl:hasValue fam:Female]

) .

Existential property restrictions

• Defining a class by the existence of a relation (object
property) to an individual in (another or the same) class,
e.g.:

– fam:Brother owl:intersectionOf (
fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom owl:Thing]

) .

• owl:someValuesFrom: each individual in the defined class
has at least one object property (given by owl:onProperty) to
an individual in the other class (given by
owl:someValuesFrom)

Existential property restrictions

• Defining a class by the existence of a relation (object
property) to an individual in (another or the same) class,
e.g.:

– fam:Uncle owl:intersectionOf (
fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom fam:Parent]

) .

• owl:someValuesFrom: each individual in the defined class
has at least one object property (given by owl:onProperty) to
an individual in the other class (given by
owl:someValuesFrom)

Universal property restrictions

• Defining a class by the necessity of a relation (object
property) only to individuals in (another or the same)
class, e.g.:

– fam:HappyFather owl:intersectionOf (
fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson]

[a owl:Restriction ;
owl:onProperty fam:hasChild ;
owl:someValuesFrom fam:HappyPerson]

) .

Property value restriction

• Using an anonymous property, e.g.:
– fam:Orphan owl:intersectionOf (

fam:Person
[rdf:type owl:Restriction ;
 owl:onProperty [owl:inverseOf :hasChild] ;
 owl:allValuesFrom fam:Dead
]

) .

Property self-reflexion (OWL2)

• Defining a class by a Self value on one of its properties,
e.g.:
– fam:NarcissisticPerson

rdf:type owl:Restriction ;
owl:onProperty fam:loves ;
owl:hasSelf "true"^^xsd:boolean .

Property value restriction

• Restrictions on data range, e.g.:
– fam:personAge owl:equivalentClass

[rdf:type rdfs:Datatype;
owl:onDatatype xsd:integer;
owl:withRestrictions (

[xsd:minInclusive "0"^^xsd:integer]
[xsd:maxInclusive "150"^^xsd:integer])

] .

– :toddlerAge owl:equivalentClass
[rdf:type rdfs:Datatype;

owl:oneOf ("1"^^xsd:integer "2"^^xsd:integer)
] .

Cardinality restriction

• Defining a class by the number of object values its
individuals have for some property, e.g.:
– music:Quartet owl:intersectionOf (

music:Ensemble
[a owl:Restriction ;

owl:onProperty music:hasInstrument ;
owl:cardinality 4]

) .

• owl:cardinality gives the exact cardinality
owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality

Qualified cardinality restriction (OWL2)

• Defining a class by the number of object values its
individuals have of a given class for some property, e.g.:
– pol:Triumvirate owl:intersectionOf (

pol:PoliticalLeadership
[a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader]

) .

• owl:qualifiedCardinality gives the exact cardinality
owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality

• Perhaps the most important addition in OWL2!

Qualified cardinality restriction (OWL2)

• music:StringQuartet owl:intersectionOf (
music:MusicalQuartet
[a owl:Class ;

owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violin]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Viola]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cello]

) .

Summary: property restrictions

• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality

• owl:onClass, owl:qualifiedCardinality,
owl:minQualifiedCardinality, owl:maxQualifiedCardinality

Anatomy of
OWL

http://www.w3.org/TR/owl2-rdf-based-semantics/

OWL versions

• OWL “1” (2002):
– OWL Full – anything goes

– OWL DL – fragment of OWL Full,
• formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):
– backwards compatible with OWL “1”!

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

– OWL2 DL – has three further fragments:

• OWL2 EL – quick reasoning, fragment of OWL2 DL

• OWL2 RL – rule language, fragment of OWL2 DL
– OWL LD – for Linked Data

• OWL2 QL – query language, fragment of OWL2 DL

OWL2 DL OWL2 Full

Summary of OWL terms
• owl:Ontology owl:Class owl:DatatypeProperty owl:ObjectProperty owl:NamedIndividual

• owl:Thing owl:Nothing owl:topObjectProperty owl:bottomObjectProperty owl:topDataProperty
owl:bottomDataProperty

• owl:inverseOf owl:FunctionalProperty owl:InverseFunctionalProperty owl:TransitiveProperty
owl:ReflexiveProperty owl:IrreflexiveProperty owl:SymmetricProperty owl:AsymmetricProperty
owl:propertyChainAxiom

• owl:equivalentClass owl:disjointWith owl:equivalentProperty owl:propertyDisjointWith owl:sameAs
owl:differentFrom owl:AllDifferent owl:AllDisjointClasses owl:AllDisjointProperties owl:members
owl:distinctMembers owl:disjointUnionOf owl:NegativePropertyAssertion owl:assertionProperty
owl:sourceIndividual owl:targetIndividual owl:targetValue

• owl:complementOf owl:intersectionOf owl:unionOf owl:oneOf owl:datatypeComplementOf
owl:onDatatype owl:withRestrictions

• owl:Restriction owl:onProperty owl:onProperties owl:allValuesFrom owl:someValuesFrom
owl:onDataRange owl:hasValue owl:hasSelf owl:cardinality owl:qualifiedCardinality
owl:minCardinality owl:maxCardinality owl:onClass owl:minQualifiedCardinality
owl:maxQualifiedCardinality

• owl:hasKey

• owl:annotatedProperty owl:annotatedSource owl:annotatedTarget owl:Annotation
owl:AnnotationProperty owl:Axiom owl:imports owl:versionInfo owl:versionIRI owl:priorVersion
owl:backwardCompatibleWith owl:OntologyProperty owl:incompatibleWith owl:deprecated
owl:DeprecatedClass owl:DeprecatedProperty

• deprecated: owl:DataRange

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

