
Welcome to INFO216:
Knowledge Graphs

Spring 2024

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Session 9: Ontologies (OWL)
 Themes:

– what and why?
– basic OWL constructs (“RDFS-Plus”):

• more precise properties
• sameness and difference
• complex classes

– more advanced OWL
• restriction classes

– Programming in RDFLib

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Readings

• Sources:
– Allemang, Hendler, Gandon (2020):

Semantic Web for the Working Ontologist, 3rd edition:
chapter 9-10 (“RDFS Plus”, chapters 8-9 in the 2nd ed.)

advanced: chapters 12-13 (chapters 11-12 in the 2nd ed.)

– Blumauer & Nagy (2020):
Knowledge Graph Cookbook – Recipes that Work:
e.g., pages 105-109, 123-124, (supplementary)

• Resources in the wiki <http://wiki.uib.no/info216>:
– OWL 2 Primer, sections 2-6 (advanced: 9-10):

http://www.w3.org/TR/owl-primer/

• show: Turtle

– VOWL: Visual Notation for OWL Ontologies

Web Ontology
Language (OWL)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Why do we need vocabularies?

• Shared, well-defined terms (dereferencable URIs) for types, properties and
some individuals that can be used to represent a domain

• Domains can be:
– people, their friends and workplaces (FOAF, BIO)
– electronic and other documents (DC, BIBO)
– commerce (schema.org)
– classification in libraries etc. (SKOS)
– general encyclopedic information (DBpedia, Wikidata)
– general time and place (OWL-Time, geo)
– ...and lots of others (→S10)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Why do we need vocabularies?

• To make knowledge graphs more precisely defined
• To make semantic data sets easier to use

– encourage reuse
– avoid misunderstandings and errors

– easier to understand, recombine, enrich...
• To support computer processing

– more powerful
– more general

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

RDFS is a useful starting point...

• We can say:
– “a president is a politician” so that

• saying “Trump is a president” entails saying “Trump is a politician”

– “a politician is a human” so that

• saying “Trump is a president” also entails saying “Trump is a human”

– “the president of something is a politician” so that

• saying “Trump is a president of U.S.A.” entails “saying Trump is a politician”

– “something having a president is a country” so that

• saying “Trump is a president of U.S.A.” entails saying “U.S.A. is a country”

– “being president also means being citizen” so that

• saying “Trump is a president of U.S.A.” entails
saying “Trump is a citizen of U.S.A.”

• RDFS expresses this but not (so much) more...

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

RDFS is a useful starting point...

• But lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 activePlayers, a VolleyballTeam 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different URIs actually represent the same class”

– “resources with different URIs represent the same resource”

– “properties with different URIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Basic idea

• Web Ontology Language (OWL):
– builds on RDF and RDFS
– reuses, renames and specialises classes and properties from RDFS
– adds precision and formality

• Basic OWL-concepts:
– owl:Thing (equivalent to rdfs:Resource)
– owl:Class (equivalent to rdfs:Class)
– owl:ObjectProperty (equivalent to rdf:Property)
– owl:NamedIndividual (things with URIs and that are not classes)

• Good practice: keep Classes, Individuals, and Properties disjoint,
i.e., no resource has more than one of them as rdf:type

http://www.w3.org/TR/owl2-rdf-based-semantics/

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

What does OWL offer?

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals
– defining new classes:

• complex classes (union, intersection, complement)
• property restrictions, enumeration of individuals

– defining new properties based on existing ones
– mathematical formality (for large parts of OWL)

• (more on this later)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Reuses or specialises RDFS
• Reused in OWL:

– rdf:type, rdf:Property,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range

– ...and lots of other stuff...
• Renamed by OWL:

– owl:Thing (equivalent to rdfs:Resource)
– owl:Class (equivalent to rdfs:Class)
– owl:ObjectProperty (equivalent to rdf:Property)

• Specialised by OWL:
– everything else in OWL specialises something in RDF / RDFS
– but also introduces its own, and more powerful,

formal underpinning

Basic OWL
(“RDFS Plus”)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Inverse properties
• Properties can be inverses (or reverses) of one another, e.g.,

– ex:DonaldTrump ex:presidentOf ex:USA .
– ex:USA ex:hasPresident ex:DonaldTrump .

• P1 owl:inverseOf P2:
– ex:presidentOf owl:inverseOf ex:hasPresident .
– owl:inverseOf owl:inverseOf owl:inverseOf .
– owl:inverseOf a owl:ObjectProperty .

• Entailment rules:
– if P1 owl:inverseOf P2 then

• P2 owl:inverseOf P1 .
– if S P1 O . P1 owl:inverseOf P2 then

• O P2 S .

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Symmetric properties
• Some properties are their own inverse, e.g.,

– ex:DonaldTrump ex:marriedTo ex:MelianiaTrump .
– ex:MelianiaTrump ex:marriedTo ex:DonaldTrump .

• P rdf:type owl:SymmetricProperty:
– ex:marriedTo a owl:SymmetricProperty .
– owl:inverseOf a owl:SymmetricProperty .
– owl:SymmetricProperty rdfs:subClassOf owl:ObjectProperty .

• Entailment rules:
– if P a owl:SymmetricProperty then

• P owl:inverseOf P .
– if S P O . P a owl:SymmetricProperty then

• O P S .

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Asymmetric, reflexive, irreflexive properties
• New in OWL2:

– both symmetric and asymmetric properties:
• ex:marriedTo a owl:SymmetricProperty .

– “marriage is always mutual (two-way)”
• ex:hasChild a owl:AsymmetricProperty .

– “two resources cannot be the child of each other”
• many properties are neither – leave it open!

– both reflexive and irreflexive properties:
• owl:sameAs a owl:ReflexiveProperty .

– “every resource is the same as itself”
• ex:hasChild a owl:IrreflexiveProperty .

– “no resource can be its own child”
• many properties are neither – leave it open!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Transitive properties

• Some properties can form chains so that the result is the property itself,
e.g.:
– ex:DonaldTrump ex:hasPredecessor ex:BarackObama .
– ex:BarackObama ex:hasPredecessor ex:GeorgeWBush .
– ex:DonaldTrump ex:hasPredecessor ex:GeorgeWBush .

• P a owl:TransitiveProperty:
– ex:hasPredecessor a owl:TransitiveProperty .
– rdfs:subClassOf a owl:TransitiveProperty .
– rdfs:subPropertyOf a owl:TransitiveProperty .

• Entailment rules:
– “if S P X . X P O . P a owl:TransitiveProperty then

• S P O .”

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Functional properties

• Each subject can only have one object value for the functional property,
e,g.,
– ex:hasPresident a owl:FunctionalProperty .
– ex:dateOfBirth a owl:FunctionalProperty .
– owl:FunctionalProperty rdfs:subClassOf owl:ObjectProperty .

• Entailment rule:
– if S P O1 . S P O2 . P a owl:FunctionalProperty then

• O1 owl:sameAs O2 .
– The rule also holds for owl:DatatypeProperties, but:

• if two different literals become asserted as owl:sameAs
one another, the ontology is inconsistent

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Functional properties

• Each subject can only have one object value for the functional property,
e,g.,
– ex:hasPresident a owl:FunctionalProperty .
– ex:dateOfBirth a owl:FunctionalProperty .
– owl:FunctionalProperty rdfs:subClassOf owl:ObjectProperty .

• Entailment rule:
– if S P O1 . S P O2 . P a owl:FunctionalProperty then

• O1 owl:sameAs O2 .
– The rule also holds for owl:DatatypeProperties, but:

• if two different literals become asserted as owl:sameAs
one another, the ontology is inconsistent

!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Inverse functional properties

• Two different subjects cannot have the same object for an inverse functional
property, i.e.,
– ex:presidentOf a owl:InverseFunctionalProperty .

• Entailment rule:
– if S1 P O . S2 P O . P a owl:InverseFunctionalProperty then

• S1 owl:sameAs S2 .
• Inverse functional properties are unique for each individual

– used for identifiers
– OWL 2 also has a built-in owl:hasKey property for identifiers

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Summary: more precise properties
• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty
• owl:TransitiveProperty
• owl:FunctionalProperty, owl:InverseFunctionalProperty
• owl:hasKey
• Also:

– negated properties
– chained properties, e.g.:

fam:hasGrandmother
owl:propertyChainAxiom

(:hasParent :hasMother) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Individual equivalence
• Sometimes, two individuals (with different URI-s) represent the same thing:

– http://dbpedia.org/resource/Donald_Trump
– http://wikidata.org/entity/Q22686

• I1 owl:sameAs I2:
– owl:sameAs a owl:ReflexiveProperty .
– owl:sameAs a owl:SymmetricProperty .
– owl:sameAs a owl:TransitiveProperty .

• owl:sameAs is an equivalence relation:
• because it is reflexive, symmetric and transitive

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Unique Name Assumption (UNA)
• If two resources have different names, do they necessarily represent

different things?
• RDF and OWL does not assume this!

– in RDF and OWL, we do not know whether resources with different
names represent different things or not

• We can use
– owl:sameAs – two resources represent the same thing
– owl:differentFrom – they represent different things
– ...or we can leave it open

• Some ICT-languages and technologies use UNA, others do not!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Individual difference
• Sometimes, a pair of individuals with different names (URI-s)

represent different things, e.g.,
– cal:Spring owl:differentFrom cal:Summer .

• owl:differentFrom
– not transitive
– not reflexive

Individual difference
• Sometimes, a pair of individuals with different names (URI-s)

represent different things, e.g.,
– cal:Spring owl:differentFrom cal:Summer .

• Sometimes, a group of individuals with different names (URI-s)
all represent different things, e.g.,
– [a owl:AllDifferent ;

owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

)] .

https://www.ldf.fi/service/rdf-grapher

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Individual difference
• Sometimes, a pair of individuals with different names (URI-s)

represent different things, e.g.,
– cal:Spring owl:differentFrom cal:Summer .

• Sometimes, a group of individuals with different names (URI-s)
all represent different things, e.g.,
– [a owl:AllDifferent ;

owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

)] .
– owl:AllDifferent and owl:distinctMembers are special constructs in OWL

• they must always be used together
– ...corresponds to pairwise owl:differentFrom between

all individuals in the owl:distinctMembers-list

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Equivalent classes
• Sometimes, two classes (with different URI-s) represent the same class:
• C1 owl:equivalentClass C2:

– owl:equivalentClass a owl:ReflexiveProperty .
– owl:equivalentClass a owl:SymmetricProperty .
– owl:equivalentClass a owl:TransitiveProperty .

• owl:equivalentClass is another equivalence relation:
• it is reflexive, symmetric and transitive

• C1 owl:equivalentClass C2 means the same as
– C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C1

• Also disjoint classes:
• uib:InternalCensor

owl:disjointWith skos:ExternalCensor .

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Equivalent properties

• Two properties (with different URI-s) can represent the same property:
• P1 owl:equivalentProperty P2:

– owl:equivalentProperty a owl:ReflexiveProperty .
– owl:equivalentProperty a owl:SymmetricProperty .
– owl:equivalentProperty a owl:TransitiveProperty .

• owl:equivalentProperty is another equivalence relation:
• it is reflexive, symmetric and transitive

• Also disjoint properties:
• skos:prefLabel owl:propertyDisjointWith skos:altLabel .

 The axioms
 are informative
(not mandatory)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Summary: sameness and difference

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:
– pairwise: owl:equivalentClass, owl:disjointWith
– groupwise difference: owl:AllDisjointClasses

• Properties:
– pairwise: equivalentProperty, propertyDisjointWith
– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:
– owl:distinctMembers (preferred) or owl:members

Basic OWL reasoning
in Python and rdflib

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Basic OWL inference in RDFLib

• import owlrl
...

DeductiveClosure(RDFS_Semantics).expand(graph) # RDFS reasoning
...

DeductiveClosure(OWLRL_Semantics).expand(graph) # OWL-RL reasoning
...

DeductiveClosure(OWLRL_Extension, # Maximum reasoning
rdfs_closure = True, axiomatic_triples = True,
datatype_axioms = True).expand(graph)

...

Complex OWL classes

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Union classes

• A union class contains all the individuals
in either of two or more other classes, e.g.,
– foaf:Agent

a owl:Class;
owl:unionOf (foaf:Person foaf:Organization) .

• Entailment rule:
– if C owl:equivalentClass [owl:unionOf (C1... Cn)] then

• C1 rdfs:subClassOf C Cn rdfs:subClassOf C .
• why not say just, e.g.,:

– foaf:Person rdfs:subClassOf foaf:Agent .
– foaf:Organization rdfs:subClassOf foaf:Agent .

?

 Actually, FOAF
defines more types of

Agents than this!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Intersection classes

• An intersection class contains all the individuals
in all of two or more other classes, e.g.
– uib:StudentAssistant

a owl:Class;
 owl:intersectionOf (uib:Student uib:Teacher) .

• Entailment rule:
– if C owl:equivalentClass [owl:intersectionOf (C1... Cn)] then

• C rdfs:subClassOf C1 C rdfs:subClassOf Cn .
• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .
– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor owl:complementOf uib:InternalCensor .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor owl:complementOf uib:InternalCensor .

– ...but is this correct?!

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor

a owl:Class;
owl:complementOf uib:InternalCensor .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor

owl:intersectionOf (
uib:Censor
owl:complementOf uib:InternalCensor

) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor

owl:intersectionOf (
uib:Censor
[a owl:Class ;
 owl:complementOf uib:InternalCensor
]

) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Complement classes

• A complement class contains all the individuals
that are not in another class:
– uib:ExternalCensor

owl:intersectionOf (
uib:Censor
[owl:complementOf uib:InternalCensor]

) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Closed World Assumption (CWA)
• Whenever something is not explicitly stated in the ontology, can we assume

that the opposite is the case?
– DBpedia only lists three James Dean movies –

can we thus assume that he only played in three?
• Classical logic and many ICT languages assume so:

– this is the “Closed World Assumption” (CWA)
• In RDF and OWL, we do not assume that something is false just because it

is not stated
– this is the “Open World Assumption” (OWA)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Enumeration classes
• An enumeration class is defined by exhaustively listing all its member

individuals, e.g.:
– [a owl:Class ;

 owl:oneOf (cal:Spring ... cal:Winter)] .
• An enumeration class is closed

– there are no other member individuals
– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil
• Does not imply that the individuals are distinct

– this must be stated explicitly

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Other ways to write complex classes
• Why can also write:

cal:Season
 owl:oneOf (cal:Spring ... cal:Winter) .

or
cal:Season owl:equivalentClass [

 owl:oneOf (cal:Spring ... cal:Winter)] .
• or (a weaker claim):

cal:Season owl:subClassOf [
 owl:oneOf (cal:Spring ... cal:Winter)] .

• Reason:
– rdfs:subClassOf can be computationally more efficient
– owl:equivalentClass is sometimes implemented

as a costly two-way rdfs:subClassOf

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Summary: complex classes
• owl:oneOf
• owl:unionOf
• owl:intersectionOf
• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual,

owl:assertionProperty, owl:targetIndividual

OWL restriction
classes

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican
a owl:Restriction ;
owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Property value restrictions
• Defining a class by a particular value on one of its properties, e.g.:

– ex:Republican owl:intersectionOf (
dbr:Person
[a owl:Restriction ;

owl:onProperty dbo:hasParty ;
owl:hasValue dbr:Republican_Party_(United_States)

]
) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Existential property restrictions
• Defining a class by the existence of a relation (object property) to an

individual in (another or the same) class, e.g.:
– ex:President owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom owl:Thing

]
) .

• owl:someValuesFrom: each individual in the defined class has at least one
object property (given by owl:onProperty) to an individual in the other class
(given by owl:someValuesFrom)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Existential property restrictions
• Defining a class by the existence of a relation (object property) to an

individual in (another or the same) class, e.g.:
– dbr:President_(government_title) owl:intersectionOf (

dbr:Person
[a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom dbr:Nation

]
) .

• owl:someValuesFrom: each individual in the defined class has at least one
object property (given by owl:onProperty) to an individual in the other class
(given by owl:someValuesFrom)

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Existential property restrictions
• Defining a class by the existence of a relation (object property) to an

individual in (another or the same) class, e.g.:
– ex:BipartisanCommittee owl:intersectionOf (

foaf:Group
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:someValuesFrom ex:Republican_(United_States)

]
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:someValuesFrom ex:Democrat_(United_States)

]
) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:RepublicanCommittee owl:intersectionOf (

foaf:Group
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:allValuesFrom ex:Republican_(United_States)

]
) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:RepublicanCommittee owl:intersectionOf (

foaf:Group
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:allValuesFrom ex:Republican_(United_States)

]
) .

What is
wrong here?

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:RepublicanCommittee owl:intersectionOf (

foaf:Group
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:allValuesFrom ex:Republican_(United_States)

]
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:someValuesFrom owl:Thing

]
) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Universal property restrictions
• Defining a class by the necessity of a relation (object property) only to

individuals in (another or the same) class, e.g.:
– ex:RepublicanCommittee owl:intersectionOf (

foaf:Group
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:allValuesFrom [

a owl:Restriction ;
owl:onProperty ex:hasParty ;
owl:hasValue ex:Republican_Party_(United_States)

]]
[a owl:Restriction ;

owl:onProperty foaf:member ;
owl:someValuesFrom owl:Thing

]) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Property self-reflexion
• Defining a class by a Self value on one of its properties, e.g.:

– ex:Narcissist
a owl:Restriction ;
owl:onProperty ex:loves ;
owl:hasSelf "true"^^xsd:boolean .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Datatype property restriction
• Restrictions on data range, e.g.:

– fam:personAge rdfs:range
[a rdfs:Datatype;

owl:onDatatype xsd:integer;
owl:withRestrictions (

[xsd:minInclusive "0"^^xsd:integer]
[xsd:maxInclusive "130"^^xsd:integer])

] .
– :toddlerAge rdfs:range

[a rdfs:Datatype;
owl:oneOf ("1"^^xsd:integer "2"^^xsd:integer)

] .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Cardinality restriction
• Defining a class by the number of object values its individuals have for

some property, e.g.:
– music:Quartet owl:intersectionOf (

music:Ensemble
[a owl:Restriction ;

owl:onProperty music:hasMusician ;
owl:cardinality 4]

) .
• owl:cardinality gives the exact cardinality

owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Qualified cardinality restriction
• Defining a class by the number of object values its individuals have of a

given class for some property, e.g.:
– pol:Triumvirate owl:intersectionOf (

pol:PoliticalLeadership
[a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader]

) .
• owl:qualifiedCardinality gives the exact cardinality

owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Qualified cardinality restriction
• music:StringQuartet owl:intersectionOf (

music:MusicalQuartet
[a owl:Class ;

owl:onProperty music:hasMusician ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violinist]

[a owl:Class ;
owl:onProperty music:hasMusician ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Violist]

[a owl:Class ;
owl:onProperty music:hasMusician ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cellist]) .

(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

Summary: property restrictions
• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality
• owl:qualifiedCardinality, owl:minQualifiedCardinality,

owl:maxQualifiedCardinality, owl:onClass

Next week:
Vocabularies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

