Welcome to INFO216: Knowledge Graphs Spring 2024

Andreas L Opdahl <Andreas.Opdahl@uib.no>

Session 9: Ontologies (OWL)

- Themes:
 - what and why?
 - basic OWL constructs ("RDFS-Plus"):
 - more precise properties
 - sameness and difference
 - complex classes
 - more advanced OWL
 - restriction classes
 - Programming in RDFLib

INFO216: Knowledge Graphs

Readings

- Sources:
 - Allemang, Hendler, Gandon (2020): Semantic Web for the Working Ontologist, 3rd edition: chapter 9-10 ("RDFS Plus", chapters 8-9 in the 2nd ed.) *advanced:* chapters 12-13 (chapters 11-12 in the 2nd ed.)
 - Blumauer & Nagy (2020): Knowledge Graph Cookbook – Recipes that Work: e.g., pages 105-109, 123-124, *(supplementary)*
- Resources in the wiki <http://wiki.uib.no/info216>:
 - OWL 2 Primer, sections 2-6 (advanced: 9-10): http://www.w3.org/TR/owl-primer/
 - show: Turtle
 - VOWL: Visual Notation for OWL Ontologies

THE KNOWLEDGE GRAPH COOKBOOK RECIPES THAT WORK

Web Ontology Language (OWL)

Why do we need vocabularies?

- Shared, well-defined terms (dereferencable URIs) for types, properties and some individuals that can be used to represent a domain
- Domains can be:
 - people, their friends and workplaces (FOAF, BIO)
 - electronic and other documents (DC, BIBO)
 - commerce (schema.org)
 - classification in libraries etc. (SKOS)
 - general encyclopedic information (DBpedia, Wikidata)
 - general time and place (OWL-Time, geo)
 - ...and *lots* of others (\rightarrow S10)

INFO216: Knowledge Graphs

Why do we need vocabularies?

- To make knowledge graphs more precisely defined
- To make semantic data sets easier to use
 - encourage reuse
 - avoid misunderstandings and errors
 - easier to understand, recombine, enrich...
- To support computer processing
 - more powerful
 - more general

(c) Andreas L Opdahl, 2024

RDFS is a useful starting point...

- We can say:
 - "a president is a politician" so that
 - saying "Trump is a president" entails saying "Trump is a politician"
 - "a politician is a human" so that
 - saying "Trump is a president" also entails saying "Trump is a human"
 - "the president of something is a politician" so that
 - saying "Trump is a president of U.S.A." entails "saying Trump is a politician"
 - "something having a president is a country" so that
 - saying "Trump is a president of U.S.A." entails saying "U.S.A. is a country"
 - "being president also means being citizen" so that
 - saying "Trump is a president of U.S.A." entails saying "Trump is a citizen of U.S.A."
- RDFS expresses this but not (so much) more...

INFO216: Knowledge Graphs

RDFS is a useful starting point...

- But lots of simple stuff it cannot express, e.g.:
 - "every ancestor of an ancestor is an ancestor too"
 - "the BirthNumber of a Person is unique"
 - "a Republic has exactly one President"
 - "a FootballTeam has 11 activePlayers, a VolleyballTeam 6"
 - "a StringQuartet has two violins but only one viola and one cello"
 - "classes with different URIs actually represent the same class"
 - "resources with different URIs represent the same resource"
 - "properties with different URIs are actually the same"
 - "two individuals are different", "two classes are disjoint"
 - "a class is a union (or intersection) of other classes"
 - "a class is a negation of another class"
- OWL expresses all this and more!

(c) Andreas L Opdahl, 2024

Basic idea

- Web Ontology Language (OWL):
 - *builds* on RDF and RDFS
 - *reuses*, *renames* and *specialises* classes and properties from RDFS
 - adds precision and formality
- Basic OWL-concepts:
 - owl:Thing (equivalent to rdfs:Resource)
 - owl:Class (equivalent to rdfs:Class)
 - owl:ObjectProperty (equivalent to rdf:Property)
 - owl:NamedIndividual (things with URIs and that are not classes)
- Good practice: keep Classes, Individuals, and Properties disjoint, i.e., no resource has more than one of them as rdf:type

INFO216: Knowledge Graphs

What does OWL offer?

- Extensions of RDFS, e.g.:
 - more *specific types* of properties
 - identical and different classes, properties, individuals
 - defining new classes:
 - complex classes (union, intersection, complement)
 - property restrictions, enumeration of individuals
 - defining new properties based on existing ones
 - mathematical formality (for large parts of OWL)
 - (more on this later)

INFO216: Knowledge Graphs

Reuses or specialises RDFS

- *Reused* in OWL:
 - rdf:type, rdf:Property, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range
 - …and lots of other stuff…
- Renamed by OWL:
 - owl:Thing (equivalent to rdfs:Resource)
 - owl:Class (equivalent to rdfs:Class)
 - owl:ObjectProperty (equivalent to rdf:Property)
- Specialised by OWL:
 - everything else in OWL specialises something in RDF / RDFS
 - but also introduces its own, and more powerful, formal underpinning

(c) Andreas L Opdahl, 2024

Basic OWL ("RDFS Plus")

Inverse properties

- Properties can be inverses (or reverses) of one another, e.g.,
 - ex:DonaldTrump ex:presidentOf ex:USA .
 - ex:USA ex:hasPresident ex:DonaldTrump .
- P1 owl:inverseOf P2:
 - ex:presidentOf owl:inverseOf ex:hasPresident .
 - owl:inverseOf owl:inverseOf owl:inverseOf.
 - owl:inverseOf a owl:ObjectProperty .
- Entailment rules:
 - if P1 owl:inverseOf P2 then
 - P2 owl:inverseOf P1 .
 - if S P1 O . P1 owl:inverseOf P2 then
 - O P2 S .

The axioms are informative (not mandatory)

INFO216: Knowledge Graphs

Symmetric properties

- Some properties are their own inverse, e.g.,
 - ex:DonaldTrump ex:marriedTo ex:MelianiaTrump .
 - ex:MelianiaTrump ex:marriedTo ex:DonaldTrump .
- P rdf:type owl:SymmetricProperty:
 - ex:marriedTo a owl:SymmetricProperty .
 - owl:inverseOf a owl:SymmetricProperty .
 - owl:SymmetricProperty rdfs:subClassOf owl:ObjectProperty .
- Entailment rules:
 - if P a owl:SymmetricProperty then
 - P owl:inverseOf P .
 - if S P O . P a owl:SymmetricProperty then
 - O P S .

The axioms are informative (not mandatory)

INFO216: Knowledge Graphs

Asymmetric, reflexive, irreflexive properties

- New in OWL2:
 - both *symmetric* and *asymmetric* properties:
 - ex:marriedTo a owl:SymmetricProperty .
 - "marriage is always mutual (two-way)"
 - ex:hasChild a owl:AsymmetricProperty .
 - "two resources cannot be the child of each other"
 - many properties are neither leave it open!
 - both *reflexive* and *irreflexive* properties:
 - owl:sameAs a owl:ReflexiveProperty .
 - "every resource is the same as itself"
 - ex:hasChild a owl:IrreflexiveProperty .
 - "no resource can be its own child"
 - *many properties are neither leave it open!*

INFO216: Knowledge Graphs

Transitive properties

- Some properties can form chains so that the result is the property itself, e.g.:
 - ex:DonaldTrump ex:hasPredecessor ex:BarackObama .
 - ex:BarackObama ex:hasPredecessor ex:GeorgeWBush .
 - ex:DonaldTrump ex:hasPredecessor ex:GeorgeWBush .
- P a owl:TransitiveProperty:
 - ex:hasPredecessor a owl:TransitiveProperty .
 - rdfs:subClassOf a owl:TransitiveProperty .
 - rdfs:subPropertyOf a owl:TransitiveProperty .
- Entailment rules:
 - "if S P X . X P O . P a owl: TransitiveProperty then
 - SPO."

The axioms are informative (not mandatory)

INFO216: Knowledge Graphs

Functional properties

- Each subject *can only have one* object value for the functional property, e,g.,
 - ex:hasPresident a owl:FunctionalProperty.
 - ex:dateOfBirth a owl:FunctionalProperty .
 - owl:FunctionalProperty rdfs:subClassOf owl:ObjectProperty .
- Entailment rule:
 - if S P O1 . S P O2 . P a owl:FunctionalProperty then
 - O1 owl:sameAs O2 .
 - The rule also holds for *owl:DatatypeProperties*, but:
 - if two different literals become asserted as *owl:sameAs* one another, *the ontology is inconsistent*

INFO216: Knowledge Graphs

Functional properties

- Each subject *can only have one* object value for the functional property, e,g.,
 - ex:hasPresident a owl:FunctionalProperty.
 - ex:dateOfBirth a owl:FunctionalProperty .
 - owl:FunctionalProperty rdfs:subClassOf owl:ObjectProperty .
- Entailment rule:
 - if S P O1 . S P O2 . P a owl:FunctionalProperty then
 - O1 owl:sameAs O2 .
 - The rule also holds for owl:DatatypeProperties, but:
 - if two different literals become asserted as owl:sameAs one another, the ontology is inconsistent

INFO216: Knowledge Graphs

Inverse functional properties

- Two different subjects cannot have the same object for an inverse functional property, i.e.,
 - ex:presidentOf a owl:InverseFunctionalProperty.
- Entailment rule:
 - if S1 P O . S2 P O . P a owl:InverseFunctionalProperty then
 - S1 owl:sameAs S2 .
- Inverse functional properties are *unique* for each individual
 - used for *identifiers*
 - OWL 2 also has a built-in *owl:hasKey* property for identifiers

INFO216: Knowledge Graphs

Summary: more precise properties

- owl:inverseOf
- owl:SymmetricProperty, owl:AsymmetricProperty
- owl:ReflexiveProperty, owl:IrreflexiveProperty
- owl:TransitiveProperty
- owl:FunctionalProperty, owl:InverseFunctionalProperty
- owl:hasKey
- Also:
 - negated properties
 - chained properties, e.g.: fam:hasGrandmother owl:propertyChainAxiom (:hasParent :hasMother).

INFO216: Knowledge Graphs

Individual equivalence

- Sometimes, two individuals (with different URI-s) represent the same thing:
 - http://dbpedia.org/resource/Donald_Trump
 - http://wikidata.org/entity/Q22686
- I1 owl:sameAs I2:
 - owl:sameAs a owl:ReflexiveProperty .
 - owl:sameAs a owl:SymmetricProperty .
 - owl:sameAs a owl:TransitiveProperty .
- owl:sameAs is an *equivalence relation*:
 - because it is *reflexive*, *symmetric* and *transitive*

INFO216: Knowledge Graphs

Unique Name Assumption (UNA)

- If two resources have different names, do they necessarily represent different things?
- RDF and OWL does *not* assume this!
 - in RDF and OWL, we <u>do not know</u> whether resources with different names represent different things or not
- We can use
 - owl:sameAs two resources represent the same thing
 - owl:differentFrom they represent different things
 - ...or we can leave it open
- Some ICT-languages and technologies use UNA, others do not!

INFO216: Knowledge Graphs

Individual difference

- Sometimes, a *pair* of individuals with different names (URI-s) represent *different* things, e.g.,
 - cal:Spring owl:differentFrom cal:Summer .
- owl:differentFrom
 - not transitive
 - not reflexive

(c) Andreas L Opdahl, 2024

Individual difference

- Sometimes, a pair of individuals with different names (URI-s) represent different things, e.g.,
 - cal:Spring owl:differentFrom cal:Summer .
- Sometimes, a *group* of individuals with different names (URI-s) *all* represent *different* things, e.g.,
 - [a owl:AllDifferent ;
 - owl:distinctMembers (

cal:Spring cal:Summer cal:Autumn cal:Winter

Individual difference

- Sometimes, a pair of individuals with different names (URI-s) represent different things, e.g.,
 - cal:Spring owl:differentFrom cal:Summer .
- Sometimes, a group of individuals with different names (URI-s) all represent different things, e.g.,
 - [a owl:AllDifferent ; owl:distinctMembers (cal:Spring cal:Summer cal:Autumn cal:Winter)].
 - owl:AllDifferent and owl:distinctMembers are special constructs in OWL
 - they must always be used together
 - ...corresponds to pairwise *owl:differentFrom* between *all* individuals in the *owl:distinctMembers*-list

INFO216: Knowledge Graphs

Equivalent classes

- Sometimes, two classes (with different URI-s) represent the same class:
- C1 owl:equivalentClass C2:
 - owl:equivalentClass a owl:ReflexiveProperty .
 - owl:equivalentClass a owl:SymmetricProperty .
 - owl:equivalentClass a owl:TransitiveProperty .
- owl:equivalentClass is another *equivalence relation*:
 - it is *reflexive*, *symmetric* and *transitive*
- C1 owl:equivalentClass C2 means the same as
 - C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C1
- Also disjoint classes:
 - uib:InternalCensor

owl:disjointWith skos:ExternalCensor.

INFO216: Knowledge Graphs

Equivalent properties

- Two properties (with different URI-s) can represent the same property:
- P1 owl:equivalentProperty P2:
 - owl:equivalentProperty a owl:ReflexiveProperty .
 - owl:equivalentProperty a owl:SymmetricProperty .
 - owl:equivalentProperty a owl:TransitiveProperty .
- owl:equivalentProperty is another *equivalence relation*:
 - it is *reflexive*, *symmetric* and *transitive*
- Also disjoint properties:
 - skos:prefLabel owl:propertyDisjointWith skos:altLabel.

INFO216: Knowledge Graphs

Summary: sameness and difference

- Individuals:
 - pairwise: owl:sameAs, owl:differentFrom
 - groupwise difference: owl:AllDifferent
- Classes:
 - pairwise: owl:equivalentClass, owl:disjointWith
 - groupwise difference: owl:AllDisjointClasses
- Properties:
 - pairwise: equivalentProperty, propertyDisjointWith
 - groupwise difference: owI:AllDisjointProperties
- Membership in the groups:
 - owl:distinctMembers (preferred) or owl:members

INFO216: Knowledge Graphs

Basic OWL reasoning in Python and rdflib

Basic OWL inference in RDFLib

• import owlrl

. . .

DeductiveClosure(RDFS_Semantics).expand(graph) # RDFS reasoning ...

DeductiveClosure(OWLRL_Semantics).expand(graph) # OWL-RL reasoning ...

DeductiveClosure(OWLRL_Extension, rdfs_closure = True, axiomatic_triples = True, datatype_axioms = True).expand(graph)

Maximum reasoning

INFO216: Knowledge Graphs

(c) Andreas L Opdahl, 2024

. . .

Complex OWL classes

Union classes

- A union class contains all the individuals in *either of* two or more other classes, e.g.,
 - foaf:Agent

a owl:Class; owl:unionOf (foaf:Person foaf:Organization) .

- Entailment rule:
 - if C owl:equivalentClass [owl:unionOf (C1... Cn)] then
 - C1 rdfs:subClassOf C Cn rdfs:subClassOf C .
- why not say just, e.g.,:
 - foaf:Person rdfs:subClassOf foaf:Agent .
 - foaf:Organization rdfs:subClassOf foaf:Agent .

Intersection classes

- An intersection class contains all the individuals in *all of* two or more other classes, e.g.
 - uib:StudentAssistant

a owl:Class; owl:intersectionOf (uib:Student uib:Teacher) .

- Entailment rule:
 - if C owl:equivalentClass [owl:intersectionOf (C1... Cn)] then
 - C rdfs:subClassOf C1 C rdfs:subClassOf Cn .
- why not say, e.g.:
 - uib:StudentAssistant rdfs:subClassOf uib:Student .
 - uib:StudentAssistant rdfs:subClassOf uib:Teacher.

- A complement class contains all the individuals *that are not* in another class:
 - uib:ExternalCensor owl:complementOf uib:InternalCensor .

INFO216: Knowledge Graphs

- A complement class contains all the individuals *that are not* in another class:
 - uib:ExternalCensor owl:complementOf uib:InternalCensor .

- ...but is this correct?!

INFO216: Knowledge Graphs

- A complement class contains all the individuals *that are not* in another class:
 - uib:ExternalCensor
 - a owl:Class; owl:complementOf uib:InternalCensor.

INFO216: Knowledge Graphs

- A complement class contains all the individuals *that are not* in another class:
 - uib:ExternalCensor
 owl:intersectionOf (
 uib:Censor
 owl:complementOf uib:InternalCensor
).

INFO216: Knowledge Graphs

- A complement class contains all the individuals *that are not* in another class:

(c) Andreas L Opdahl, 2024

- A complement class contains all the individuals *that are not* in another class:
 - uib:ExternalCensor
 owl:intersectionOf (
 uib:Censor
 [owl:complementOf uib:InternalCensor]
).

INFO216: Knowledge Graphs

Closed World Assumption (CWA)

- Whenever something is not explicitly stated in the ontology, can we assume that the opposite is the case?
 - DBpedia only lists three James Dean movies can we thus assume that he only played in three?
- Classical logic and many ICT languages assume so:
 - this is the "Closed World Assumption" (CWA)
- In RDF and OWL, we <u>do not assume</u> that something is false just because it is not stated
 - this is the "Open World Assumption" (OWA)

INFO216: Knowledge Graphs

Enumeration classes

- An *enumeration class* is defined by exhaustively listing all its member individuals, e.g.:
 - [a owl:Class ;
 - owl:oneOf (cal:Spring ... cal:Winter)].
- An enumeration class is *closed*
 - there are no other member individuals
 - ensured by using *RDF Collections:*
 - rdf:List, rdf:first, rdf:rest, rdf:nil
- Does not imply that the individuals are distinct
 - this must be stated explicitly

INFO216: Knowledge Graphs

Other ways to write complex classes

• Why can also write:

```
cal:Season
owl:oneOf ( cal:Spring ... cal:Winter ) .
```

or

cal:Season owl:equivalentClass [
 owl:oneOf (cal:Spring ... cal:Winter)].

• or (a weaker claim):

cal:Season owl:subClassOf [
 owl:oneOf (cal:Spring ... cal:Winter)].

- Reason:
 - rdfs:subClassOf can be computationally more efficient
 - owl:equivalentClass is sometimes implemented as a costly two-way rdfs:subClassOf

INFO216: Knowledge Graphs

Summary: complex classes

- owl:oneOf
- owl:unionOf
- owl:intersectionOf
- owl:complementOf (and the CWA)
- owl:NegativePropertyAssertion, owl:sourceIndividual, owl:assertionProperty, owl:targetIndividual

INFO216: Knowledge Graphs

OWL restriction classes

Property value restrictions

- Defining a class by a particular value on one of its properties, e.g.:
 - ex:Republican

a owl:Restriction ; owl:onProperty dbo:hasParty ; owl:hasValue dbr:Republican_Party_(United_States) .

INFO216: Knowledge Graphs

Property value restrictions

- Defining a class by a particular value on one of its properties, e.g.:
 - ex:Republican owl:intersectionOf (
 - dbr:Person
 - [a owl:Restriction ;
 - owl:onProperty dbo:hasParty;
 - owl:hasValue dbr:Republican_Party_(United_States)

Existential property restrictions

- Defining a class by the existence of a relation (object property) to an individual in (another or the same) class, e.g.:
 - ex:President owl:intersectionOf (

dbr:Person

[a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom owl:Thing

 owl:someValuesFrom: each individual in the defined class has at least one object property (given by owl:onProperty) to an individual in the other class (given by owl:someValuesFrom)

INFO216: Knowledge Graphs

Existential property restrictions

- Defining a class by the existence of a relation (object property) to an individual in (another or the same) class, e.g.:
 - dbr:President_(government_title) owl:intersectionOf (dbr:Person
 - [a owl:Restriction ;

owl:onProperty ex:presidentOf ;
owl:someValuesFrom dbr:Nation

 owl:someValuesFrom: each individual in the defined class has at least one object property (given by owl:onProperty) to an individual in the other class (given by owl:someValuesFrom)

INFO216: Knowledge Graphs

Existential property restrictions

- Defining a class by the existence of a relation (object property) to an individual in (another or the same) class, e.g.:
 - ex:BipartisanCommittee owl:intersectionOf (foaf:Group
 - [a owl:Restriction ;
 - owl:onProperty foaf:member ;
 - owl:someValuesFrom ex:Republican_(United_States)
 - [a owl:Restriction ;
 - owl:onProperty foaf:member ;
 owl:someValuesFrom ex:Democrat_(United_States)

- Defining a class by the necessity of a relation (object property) only to individuals in (another or the same) class, e.g.:
 - ex:RepublicanCommittee owl:intersectionOf (foaf:Group
 - [a owl:Restriction ;
 - owl:onProperty foaf:member ;
 - owl:allValuesFrom ex:Republican_(United_States)

- Defining a class by the necessity of a relation (object property) only to individuals in (another or the same) class, e.g.:
 - ex:RepublicanCommittee owl:intersectionOf (foaf:Group
 - [a owl:Restriction ;
 - owl:onProperty foaf:member ;
 - owl:allValuesFrom ex:Republican_(United_States)

INFO216: Knowledge Graphs

- Defining a class by the necessity of a relation (object property) only to individuals in (another or the same) class, e.g.:
 - ex:RepublicanCommittee owl:intersectionOf (foaf:Group
 - [a owl:Restriction ;

owl:onProperty foaf:member ;

owl:allValuesFrom ex:Republican_(United_States)

[a owl:Restriction ;

owl:onProperty foaf:member ; owl:someValuesFrom owl:Thing

FRANCE NO

(c) Andreas L Opdahl, 2024

- Defining a class by the necessity of a relation (object property) only to individuals in (another or the same) class, e.g.:
 - ex:RepublicanCommittee owl:intersectionOf (foaf:Group
 - [a owl:Restriction ;
 - owl:onProperty foaf:member ;
 - owl:allValuesFrom [
 - a owl:Restriction ;

```
owl:onProperty ex:hasParty ;
```

owl:hasValue ex:Republican_Party_(United_States)

]] [a owl:Restriction ;

owl:onProperty foaf:member ; owl:someValuesFrom owl:Thing

(c) Andreas L Opdahl, 2024

Property self-reflexion

- Defining a class by a *Self* value on one of its properties, e.g.:
 - ex:Narcissist

a owl:Restriction ; owl:onProperty ex:loves ; owl:hasSelf "true"^^xsd:boolean .

INFO216: Knowledge Graphs

Datatype property restriction

- Restrictions on data range, e.g.:
 - fam:personAge rdfs:range
 - [a rdfs:Datatype;

owl:onDatatype xsd:integer;

owl:withRestrictions (

[xsd:minInclusive "0"^^xsd:integer]

[xsd:maxInclusive "130"^^xsd:integer])

- :toddlerAge rdfs:range

].

[a rdfs:Datatype; owl:oneOf ("1"^^xsd:integer "2"^^xsd:integer)

INFO216: Knowledge Graphs

Cardinality restriction

- Defining a class by the number of object values its individuals have for some property, e.g.:
 - music:Quartet owl:intersectionOf (

music:Ensemble

- [a owl:Restriction ; owl:onProperty music:hasMusician ; owl:cardinality 4]
- owl:cardinality gives the *exact cardinality* owl:minCardinality gives the *least cardinality* owl:maxCardinality gives the *greatest cardinality*

INFO216: Knowledge Graphs

Qualified cardinality restriction

- Defining a class by the number of object values its individuals have of a given class for some property, e.g.:
 - pol:Triumvirate owl:intersectionOf (

pol:PoliticalLeadership

a owl:Restriction ; owl:onProperty pol:hasMember ;

owl:qualifiedCardinality 3 ; owl:onClass pol:PoliticalLeader

 owl:qualifiedCardinality gives the exact cardinality owl:minQualifiedCardinality gives the least cardinality owl:maxQualifiedCardinality gives the greatest cardinality

INFO216: Knowledge Graphs

Qualified cardinality restriction

- music:StringQuartet owl:intersectionOf (
 music:MusicalQuartet
 - [a owl:Class ;

owl:onProperty music:hasMusician ; owl:qualifiedCardinality "2" ; owl:onClass music:Violinist]

[a owl:Class ;

owl:onProperty music:hasMusician ; owl:qualifiedCardinality "1" ; owl:onClass music:Violist]

a owl:Class ;

owl:onProperty music:hasMusician ;
owl:qualifiedCardinality "1" ;
owl:onClass music:Cellist]).

Summary: property restrictions

- owl:Restriction owl:onProperty
- owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
- owl:cardinality, owl:minCardinality, owl:maxCardinality
- owl:qualifiedCardinality, owl:minQualifiedCardinality, owl:maxQualifiedCardinality, owl:onClass

INFO216: Knowledge Graphs

Next week: Vocabularies