
Welcome to INFO216:
Knowledge Graphs

Spring 2022

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Session 12: Graph embeddings
 Themes:

– KGs and machine learning (ML)
– what are embeddings?

• word embeddings
• how to find and use them
• other types of embeddings

– what are graph embeddings?
• how to find them...
• ...and what to use them for

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

• Material at http://wiki.uib.no/info216:
– Introduction to Machine Learning
– Introduction to Word Embeddings
– Introduction to Knowledge Graph Embeddings

• Supplementary (links in the wiki):
– Mikolov et al’s original word2vec paper
– Bordes et al’s original TransE paper
– TorchKGE documentation (for the labs):

• https://torchkge.readthedocs.io/en/latest/index.html

Readings

KGs and
Machine Learning (ML)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

What are the connections?
• Knowledge graphs are well matched with machine learning!
• Preparing inputs to ML (varying origins, formats, modalities…)

– also managing outputs from ML
• Infusing world knowledge into ML

– common sense knowledge, world knowledge (domain and general), …
• As a native ML technique

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

A micro-introduction to machine learning (ML)
• Sole purpose: to be able to understand and use KG embeddings
• How to make computers do useful things based on examples (training data)

Supervised learning:
– training materials comprise input-output value pairs as examples

• Unsupervised learning:
– training materials comprise only input examples

• Several other variants: semi-supervised, reinforcement learning, …
• Learning KG (and other) embeddings is unsupervised

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Train, evaluate, and test
• Training examples can be split in three:

– training data are used to train the model
– validation data are used to optimise hyper-parameters and monitor

progress
– test data are used only for final evaluation
– 60%-20%-20% or 80%-10%-10% split is common

• also minimum requirements for test examples
• k-fold cross-validation:

– training and validation data are split in k folds
– k-1 folds are used for training, 1 for validation
– repeated k times for each validation fold
– finally, the measures are averaged

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Epochs and batches
• We can go through the training data many times

– each time is an epoch
• We can go through the training examples in groups

– each group is called a batch
• Each example creates a loss
• So:

– training consists of many epochs
– each epoch consists of many batches
– each batch consists of many training examples
– each training example creates a loss
– after each batch, steps are taken to minimise future loss

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Evaluation measures
• Results without ranking:

– accuracy (A): ratio of correct results
– there are lots of others:

• precision (P), recall (R), F1 = 2PR/(P+R), ...
• Ranked results:

– Hit@n: number of correct results in the “top n”, e.g., Hit@10
– Mean Rank: average rank of the correct results
– Mean Reciprocal Rank (MRR): average inverse rank of the correct

results, example:
• the correct results have rank 1, 3, 28
• MRR = (1/1 + 1/3 + 1/28) / 3

• Other measures for other data types, e.g., time series data

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Under- and overfitting
• Underfitting:

– we have not trained for long enough, too few epocs
– there is more to learn from the training data
– high loss, weak validation measures

• Overfitting:
– we have trained for too long, too many epocs
– the model has specialised on the training data
– low loss, weak validation measures

https://365datascience.com/tutorials/machine-learning-tutorials/overfitting-underfitting/

What are
embeddings?

How can we represent the meaning of words?
• By designation (e.g., textual descriptions in a dictionary)
• As nodes in a network (e.g., in WordNet or a knowledge graph)
• Formally (e.g., adding axioms to)
• As vectors in a latent semantic space!

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

How can we represent the meaning of words?
• By designation (e.g., textual descriptions in a dictionary)
• As nodes in a network (e.g., in WordNet or a knowledge graph)
• Formally (e.g., adding axioms to)
• As vectors in a latent semantic space!

– [0.01 0.62 0.03 … 0.41]
– similar words are close to one another
– relative positions between words can be systematic

• [Paris] – [France] + [Italy] ≈ [Rome]
– distances between words can represent relations

• [J. K. Rowling] + [influenced by] ≈ [J. R. R. Tolkien]
• Important use: as inputs to deep neural networks

that process NL text

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

How to learn the vectors?
• CBOW (Continuous Bag of Words):

– part of word2vec
– neural network with one hidden layer
– trained on large corpus of NL text

(1.6 billion words)
– input examples: sentences with one

word missing
– expected output: the missing word
– the weights in the neural network are

used as word vectors
• Also: Skip-gram, GloVe, FastText, …
• Ubiquitous as inputs to deep neural

networks that process NL text

After training, W’’
consists of V word
vectors with dimension N

Example dimensions:
● V = 10000
● N = 300

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

• Extremely powerful and much used, but be careful
• The distributional hypothesis:

– “words that occur in the same contexts tend to have similar meanings”
(Harris 1954)

– hence, word similarity can be measured in terms of vector similarity
– this is not true

• synonyms will often appear close to the same words
• but so will many antonyms (“love”, “hate”)

– syntagmatic similarity:
the words are able to combine in sentences with the same other words

– paradigmatic similarity:
the words can be substituted with one another

Word similarity

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Other types of embeddings
• The idea has caught on:

– phrase embeddings (“baseball bat”, “linear algebra”, …)
– word piece embeddings ([lin-] + [-ear], [al-] + [-ge-]+ [-bra])

• Contextual embeddings (ELMo):
– how to deal with words that are

• homonymous (different words that look/sound the same)
• polysemous (same word form has several meanings)
• words have different embeddings in different neighbourhoods

• Sentence and paragraph embeddings:
– transformer models with attention
– BERT and descendants, e.g., S-BERT

• Graph embeddings!

What are
graph embeddings?

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

How can we represent the meaning of graphs?
• By designation (e.g., textual descriptions) of nodes and edges
• By URIs defined in open KGs and standard vocabularies
• Formally (e.g., using description logic)
• As vectors in a latent semantic space!

– node vectors
– edge vectors
– graph vectors

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

What can we do with graph embeddings?
• Graph completion and validation:

– node classification: given a node which type should it have?
– link prediction: between two given nodes, should there be an edge?
– relation prediction: given two nodes, which edge type should link them?
– triple classification: given two nodes and an edge, is the triple correct?

• Graph (or sub-graph) classification:
– what type of entity/situation/event does the graph represent?
– which class does the graph represent?

• Input to deep networks:
– perhaps in combination with text, images, ...
– “early or late fusion”
– deep “multi-path” networks ((example))

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

How to learn the vectors?
• Early and simple example:

– Deepwalk (2014)
• Algorithm:

1) drop a marker randomly onto a graph node

2) let the marker traverse the graph randomly along edges for n steps
● additional parameters can guide traversal

3) treat each resulting walk of n nodes as a sentence of n words

4) feed a corpus of n-node walks into CBOW or similar
• Instead of a vector for each word, this produces a vector for each node
• Limitations:

– all relations are equal
– sampling may not fully exploit graph structure

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Translational embeddings (TransE)
• The translational property:

– if (h, r, t) ϵ KG, then [h] + [r] ≈ [t]
• Approach:

– start out with random vectors for nodes and edges
– repeat:

• for each (h, r, t) ϵ KG, generate corrupted (h’, r, t’) not in KG
(either h’ or t’ is changed)

• adjust vectors to
– minimise dist([h] + [r], [t])
– maximise dist([h’] + [r], [t’])
– loss is L = ɣ + dist([h] + [r], [t]) - dist([h’] + [r], [t’])

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Evaluation
• Link prediction:

– h + r ≈ which t?
– MRR (not reciprocal), Mean Rank, Hit@n (@10).
– filtered and raw variants

• Relation prediction:
– h – t ≈ which r?
– MRR (not reciprocal), Mean Rank, Hit@n (@10).
– filtered and raw variants

• Relation classification:
– are (h, t, r) and (h’, t, r’) in KG?
– accuracy (A)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

MRR Acc

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

MRR Acc

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Learning curves

TransE on FB15k237 with 5000 epochs

MRR FitAcc

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Datasets and pre-trained models
• Datasets:

– Freebase extract (FB15k)
– WordNet synsets (WN)
– both have problems with

training/validation/test overlap:
• use FB15k237 and WN18RR instead

• Pre-trained models:
– for example TransE already trained on FB15k237

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Limitations
• TransE is powerful and simple, but has limitations:

– works best for 1-1 relations
– trained on corrupted (h’, r, t) and (h, r, t’) variants, but never (h, r’, t)
– therefore bad on relation prediction
– several derivations:

• TransH, TransR, TransD, TorusE, …
– more recent developments:

• Graph Neural Netwoks (GNNs)
• e.g., Graph Convolutional Networks (CGNs)
• combines ideas from:

– Convolutional Neural Networks (CNNs)

– big graph databases

Next week:
Knowledge Engineering /

Wrapping Up

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

