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Session 12: Graph embeddings
 Themes:

– KGs and machine learning (ML)
– what are embeddings?

• word embeddings
• how to find and use them
• other types of embeddings

– what are graph embeddings?
• how to find them...
• ...and what to use them for
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• Material at http://wiki.uib.no/info216:
– Introduction to Machine Learning
– Introduction to Word Embeddings
– Introduction to Knowledge Graph Embeddings

• Supplementary (links in the wiki): 
– Mikolov et al’s original word2vec paper
– Bordes et al’s original TransE paper
– TorchKGE documentation (for the labs):

• https://torchkge.readthedocs.io/en/latest/index.html

Readings



KGs and
Machine Learning (ML)
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What are the connections?
• Knowledge graphs are well matched with machine learning!
• Preparing inputs to ML (varying origins, formats, modalities…)

– also managing outputs from ML
• Infusing world knowledge into ML

– common sense knowledge, world knowledge (domain and general), …
• As a native ML technique
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A micro-introduction to machine learning (ML)
• Sole purpose: to be able to understand and use KG embeddings
• How to make computers do useful things based on examples (training data)

Supervised learning:
– training materials comprise input-output value pairs as examples

• Unsupervised learning:
– training materials comprise only input examples

• Several other variants: semi-supervised, reinforcement learning, …
• Learning KG (and other) embeddings is unsupervised
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Train, evaluate, and test
• Training examples can be split in three:

– training data are used to train the model
– validation data are used to optimise hyper-parameters and monitor 

progress
– test data are used only for final evaluation
– 60%-20%-20% or 80%-10%-10% split is common

• also minimum requirements for test examples
• k-fold cross-validation:

– training and validation data are split in k folds
– k-1 folds are used for training, 1 for validation
– repeated k times for each validation fold
– finally, the measures are averaged



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Epochs and batches
• We can go through the training data many times

– each time is an epoch
• We can go through the training examples in groups

– each group is called a batch
• Each example creates a loss
• So:

– training consists of many epochs
– each epoch consists of many batches
– each batch consists of many training examples
– each training example creates a loss
– after each batch, steps are taken to minimise future loss
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Evaluation measures
• Results without ranking:

– accuracy (A): ratio of correct results
– there are lots of others:

• precision (P), recall (R), F1 = 2PR/(P+R), ...
• Ranked results:

– Hit@n: number of correct results in the “top n”, e.g., Hit@10
– Mean Rank: average rank of the correct results
– Mean Reciprocal Rank (MRR): average inverse rank of the correct 

results, example:
• the correct results have rank 1, 3, 28
• MRR = (1/1 + 1/3 + 1/28) / 3

• Other measures for other data types, e.g., time series data
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Under- and overfitting
• Underfitting:

– we have not trained for long enough, too few epocs
– there is more to learn from the training data
– high loss, weak validation measures

• Overfitting:
– we have trained for too long, too many epocs
– the model has specialised on the training data
– low loss, weak validation measures



https://365datascience.com/tutorials/machine-learning-tutorials/overfitting-underfitting/



What are
embeddings?



How can we represent the meaning of words?
• By designation (e.g., textual descriptions in a dictionary)
• As nodes in a network (e.g., in WordNet or a knowledge graph)
• Formally (e.g., adding axioms to )
• As vectors in a latent semantic space!
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How can we represent the meaning of words?
• By designation (e.g., textual descriptions in a dictionary)
• As nodes in a network (e.g., in WordNet or a knowledge graph)
• Formally (e.g., adding axioms to )
• As vectors in a latent semantic space!

– [0.01 0.62 0.03 … 0.41 ]
– similar words are close to one another
– relative positions between words can be systematic

• [Paris] – [France] + [Italy] ≈ [Rome]
– distances between words can represent relations

• [J. K. Rowling] + [influenced by] ≈ [J. R. R. Tolkien]
• Important use: as inputs to deep neural networks 

that process NL text
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How to learn the vectors?
• CBOW (Continuous Bag of Words):

– part of word2vec
– neural network with one hidden layer
– trained on large corpus of NL text

(1.6 billion words)
– input examples: sentences with one 

word missing
– expected output: the missing word
– the weights in the neural network are 

used as word vectors
• Also: Skip-gram, GloVe, FastText, …
• Ubiquitous as inputs to deep neural 

networks that process NL text



After training, W’’
consists of V word
vectors with dimension N

Example dimensions:
● V = 10000
● N = 300
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• Extremely powerful and much used, but be careful
• The distributional hypothesis:

– “words that occur in the same contexts tend to have similar meanings” 
(Harris 1954)

– hence, word similarity can be measured in terms of vector similarity
– this is not true

• synonyms will often appear close to the same words
• but so will many antonyms (“love”, “hate”)

– syntagmatic similarity: 
the words are able to combine in sentences with the same other words

– paradigmatic similarity: 
the words can be substituted with one another

Word similarity
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Other types of embeddings
• The idea has caught on:

– phrase embeddings (“baseball bat”, “linear algebra”, …)
– word piece embeddings ([lin-] + [-ear], [al-] + [-ge-]+ [-bra])

• Contextual embeddings (ELMo):
– how to deal with words that are

• homonymous (different words that look/sound the same)
• polysemous (same word form has several meanings)
• words have different embeddings in different neighbourhoods

• Sentence and paragraph embeddings:
– transformer models with attention
– BERT and descendants, e.g., S-BERT

• Graph embeddings!



What are
graph embeddings?
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How can we represent the meaning of graphs?
• By designation (e.g., textual descriptions) of nodes and edges
• By URIs defined in open KGs and standard vocabularies
• Formally (e.g., using description logic)
• As vectors in a latent semantic space!

– node vectors
– edge vectors
– graph vectors
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What can we do with graph embeddings?
• Graph completion and validation:

– node classification: given a node which type should it have?
– link prediction: between two given nodes, should there be an edge?
– relation prediction: given two nodes, which edge type should link them?
– triple classification: given two nodes and an edge, is the triple correct?

• Graph (or sub-graph) classification:
– what type of entity/situation/event does the graph represent?
– which class does the graph represent?

• Input to deep networks:
– perhaps in combination with text, images, ...
– “early or late fusion”
– deep “multi-path” networks ((example))
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How to learn the vectors?
• Early and simple example:

– Deepwalk (2014)
• Algorithm:

1)  drop a marker randomly onto a graph node

2)  let the marker traverse the graph randomly along edges for n steps
● additional parameters can guide traversal

3)  treat each resulting walk of n nodes as a sentence of n words

4)  feed a corpus of n-node walks into CBOW or similar
• Instead of a vector for each word, this produces a vector for each node
• Limitations:

– all relations are equal
– sampling may not fully exploit graph structure
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Translational embeddings (TransE)
• The translational property:

– if (h, r, t) ϵ KG, then [h] + [r] ≈ [t]
• Approach:

– start out with random vectors for nodes and edges
– repeat:

• for each (h, r, t) ϵ KG, generate corrupted (h’, r, t’) not in KG
(either h’ or t’ is changed)

• adjust vectors to
– minimise dist([h] + [r], [t])
– maximise dist([h’] + [r], [t’])
– loss is L = ɣ + dist([h] + [r], [t]) - dist([h’] + [r], [t’])
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Evaluation
• Link prediction: 

– h + r ≈ which t?
– MRR (not reciprocal), Mean Rank, Hit@n (@10).
– filtered and raw variants

• Relation prediction: 
– h – t  ≈ which r?
– MRR (not reciprocal), Mean Rank, Hit@n (@10).
– filtered and raw variants

• Relation classification: 
– are (h, t, r) and (h’, t, r’) in KG?
– accuracy (A)
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Learning curves

TransE on FB15k237 with 5000 epochs

MRR Acc
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Learning curves

TransE on FB15k237 with 5000 epochs

MRR Acc
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Learning curves

TransE on FB15k237 with 5000 epochs

MRR FitAcc
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Datasets and pre-trained models
• Datasets:

– Freebase extract (FB15k)
– WordNet synsets (WN)
– both have problems with

training/validation/test overlap:
• use FB15k237 and WN18RR instead

• Pre-trained models:
– for example TransE already trained on FB15k237



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Limitations
• TransE is powerful and simple, but has limitations:

– works best for 1-1 relations
– trained on corrupted (h’, r, t) and (h, r, t’) variants, but never (h, r’, t)
– therefore bad on relation prediction
– several derivations:

• TransH, TransR, TransD, TorusE, …
– more recent developments:

• Graph Neural Netwoks (GNNs)
• e.g., Graph Convolutional Networks (CGNs)
• combines ideas from:

– Convolutional Neural Networks (CNNs)

– big graph databases



Next week:
Knowledge Engineering /

Wrapping Up
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