
(c) Andreas L Opdahl, 2017

Welcome to INFO216:
Advanced Modelling

Theme, spring 2017:
Modelling and Programming

the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>



(c) Andreas L Opdahl, 2017

About me

• Background:

– siv.ing (1988), dr.ing (1992) from NTH/NTNU
– Univ. of Bergen since the early 1990-ies
– part-time programmer for industry
– consulting (enterprise and information modelling)

• Central research interest:
– modelling of information systems and enterprises
– several Forskningsråd projects and networks

• Semantic technologies:
– semantics of modelling languages
– Interop Network of Excellence (EU)
– start-up on social semantic tagging (Lexitags)



(c) Andreas L Opdahl, 2017

New project: BDEM

• Leveraging Big Data for Emergency Management

– how can semantic technologies play a part?
– developing new Master courses

• Pending proposals:
– knowledge graphs for newsroom systems
– semantic workflows for science



(c) Andreas L Opdahl, 2017

Lecture 1
 Themes:

– what is the Web of Data?
• and what are semantic technologies?
• ...picking up the thread from INFO116

– introduction to INFO216
• organisation of the course
• practical things

– overview of Jena
• application programming interface (API) for Java
• important classes and methods

– the programming project



(c) Andreas L Opdahl, 2017

Readings

• Sources:

– Allemang & Hendler (2011): 
Semantic Web for the Working Ontologist
chapters 1-2

– Apache Jena introductions

– Apache Jena tutorials
– Apache Jena javadoc

• Does http://wiki.uib.no/info216 work for you?
– the detailed readings are there!



(c) Andreas L Opdahl, 2017

The Web of Data



(c) Andreas L Opdahl, 2017

Transition

• From a Web of Documents

– today, the “plain old web” (PoW)
– document-centric
– document-to-document links
– for humans

• to a Web of Data
– the future “semantic web”, “Web 3.0”, 

“Linked Data”, “Web of Knowledge”
– document- and data-centric
– doc-to-doc and data-to-data links
– for humans and machines

• AAA = Anyone can say Anything about Any topic



(c) Andreas L Opdahl, 2017

Challenge

• There's an enormous amount of data on the web
– ...but the data are mostly not linked

(think of a world wide web without document links!)
– availability, accessibility does not go all the way

– what if we had standard ways of representing data 
so that linkable data could always be automatically 
linked?

– enormous potential to solve, simplify, speed up...
many critical information handling problems

• This is the purpose of semantic technologies
• This is the vision behind the Web of Data

Tim Berners-Lee: <http://www.youtube.com/watch?v=HeUrEh-nqtU>



(c) Andreas L Opdahl, 2017

Developments

• Not a single coordinated effort:

– ...a broad variety of developments:
• e.g., Semantic Web, Web of Data, contextual web, 

microformats, Microdata, Linked Open Data cloud, 
company-internal semantic data, knowledge 
graphs, Google's knowledge graph / vault and rich 
snippets, Facebook's graph API, social tagging, 
lifting social media, Wikidata, JSON-LD...

– ...with some (rather) common themes:
• e.g., semantically tagged data, standard 

vocabularies, standard exchange formats, RDF 
graphs, openness, community-based

– ...using many of the same technologies



(c) Andreas L Opdahl, 2017

So what are semantic (-ally tagged) data?

• Metadata are data about other data (actually information)
– e.g., data about the format and language of a web page

• Semantic metadata are data about the meaning of other 
data
– e.g., data about the meaning of each table and column in a 

relational database

• Semantic data (or semantically tagged data) are data 
supported by semantic metadata

– or: semantic data are data supported by metadata 
about their meaning

– e.g., the above relational database along with the data 
about its meaning



(c) Andreas L Opdahl, 2017

Can we really represent meaning?

• Only in part!

– meaning a complex concept with
– several levels: semantics, pragmatics, social...

• Vocabularies can capture certain aspects of meaning:
– standard URIs for types of resources
– standard URIs for properties
– standard types for literals
– rules about how they combine

• Other open semantic datasets define:
– standard URIs for individual resources



(c) Andreas L Opdahl, 2017

How to represent semantic data?

• Can in principle be represented on many formats

• The Web of Data relies heavily on the 
Resource Description Framework (RDF)
– a “normal form” for semantic data
– also called “knowledge graphs”
– used both for the data and their metadata
– either native/reified, embedded, or virtual

• More expressive vocabularies are available using
– RDF Schema (RDFS)
– Web Ontology Language (OWL)
– ...both can be said to build on RDF



(c) Andreas L Opdahl, 2017

Resource Description Framework

• Represents data as triples (“statements”):

– (subject, predicate, object)
– subject:

• represents what the statement is about
• the URI of a semantic resource

– predicate:
• represents a property of the subject resource
• the URI of a semantic property

– object:
• represents the value of a property for a subject
• either: the URI of a semantic resource
• or: a literal (number, string, boolean...)



(c) Andreas L Opdahl, 2017

Semantic graphs and data sets

• Graph (or Model):

– a collection of triples/statements (possibly none)
– “knowledge graphs”

• Data set:
– a collection of graphs (at least one)
– one of the graphs is default/unnamed
– the others are named
– from triples/statements:

• (subject, predicate, object)
– to quadruples (quads):

• (graph, subject, predicate, object)



(c) Andreas L Opdahl, 2017

Organisation of
the course



(c) Andreas L Opdahl, 2017

Curriculum

• Mandatory: 
● textbook: 

Allemang & Hendler: Semantic Web for the Working 
Ontologist, 2nd ed. 2011

● lectures
● materials in the wiki (wiki.uib.no/info216)

● introductions, tutorials, javadoc
● standards documents
● academic papers

• Cursory:
– further materials in the wiki (wiki.uib.no/info216)



(c) Andreas L Opdahl, 2017

Lectures and labs

• Around 14 lectures:
– usually Thursdays 1015-1200
– mostly theory

● some workshop-style parts
● bring laptops in case!

– lectures are part of the curriculum (“pensum”)
– no lectures on: 

● March 2nd, March 9th, April 13th

• Around 14 lab days, starting next week:
– lab leader: Sigve Solvaag
– 4 lab days used for project presentations/discussions:

● February 7th, March 7th, April 4th, May 2nd

– the rest are practical assignments
– 80% mandatory, including all the presentation days



(c) Andreas L Opdahl, 2017

Theory lectures (semi-tentative)

1. Introduction

2. RDF

3. RDFS

4. Architecture

5. Services

6. SPARQL

7. Visualisation*

8. RDFS Plus

9. Vocabularies

10. Linked Open Data

11. Resources

12. OWL

13. OWL DL

14. Ontology development*

15. Interoperability*

You learn programming (mostly) through 
the lab exercises and project!



(c) Andreas L Opdahl, 2017

Lab exercises (tentative)

1. Eclipse and Jena

2. RDF programming

3. RDFS programming

4. Project presentations

5. Storing graphs & TDB

6. Web APIs & JSON-LD

7. SPARQL with Fuseki

8. Project presentations

9. SPARQL in Jena

10. Client-side presentation

11. SPARQL Update

12. Project presentations

13. Protege-OWL

14. OWL programming

15. Project presentations

You will learn Jena programming (mostly)
through the lab exercises and project!



(c) Andreas L Opdahl, 2017

Programming project

• Mandatory programming project by May 22th 
– groups:

● 3 people recommended, 1-2 ok, never 4 or more
– counts 40% of course grade

● follow-up meetings
● mandatory presentations

● February 7th, March 7th, April 4th, May 2nd

● May 22nd 
● graded on deliveries and process

● originality, effort, code, interfaces...
– we will outline project types



(c) Andreas L Opdahl, 2017

Programming project

• The programming project shall develop a semantic/linked 
data application. Development and run-time platform is 
free choice, as is programming language.

• The project should be carried out in groups of three and 
not more. Working individually or in pairs is possible, but 
not optimal. Groups of more than three will not be 
accepted.

• The application will be presented in the seminar groups, 
and each group member will describe their contribution 
to the finished product. The assignment must be done in 
the teaching semester.

• ...more about that later!



(c) Andreas L Opdahl, 2017

Evaluation

• Two-part evaluation:

– individual, written 3-hour exam (60%)
– group assignment/programming project (40%)

• Exam requirements:
– submitted programming project
– participation in 80% of labs



(c) Andreas L Opdahl, 2017

Programming RDF
with Jena

(and RDFS, OWL, SPARQL...)



(c) Andreas L Opdahl, 2017

Jena

• Java framework for the Web of Data
– for developing apps, services and servers
– provides a collection of Java libraries and tools

(API = Application Programming Interface)
– stores information as RDF triples in directed graphs
• in memory, files and databases

– allows adding, removing, manipulating, and moving 
that information

• Originally developed by HP
– later taken over by Apache

http://jena.apache.org/about_jena/



(c) Andreas L Opdahl, 2017

Components

• The Jena Framework includes:
– an API for reading, processing and writing RDF data in 

XML, N-triples, Turtle, JSON-LD, and other formats;

– a triple store to allow large numbers of RDF triples to be 
efficiently stored on disk;

– a query engine compliant with the latest SPARQL 
specification;

– a server to allow RDF data to be published to other 
applications using a variety of protocols, including 
SPARQL;

– an ontology API for handling OWL and RDFS ontologies;

– a rule-based inference engine for reasoning with RDF and 
OWL data sources.



(c) Andreas L Opdahl, 2017

RDF API

Jena's RDF API:
– for accessing graphs, triples and their components
• adding, removing, finding triples and graphs
• parsing and writing RDF files

– Resource represents an RDF resource
– Literal for data values
– Property represents an RDF property
– Statement represents an RDF triple
– Model represents an RDF graph
– Graph represents an RDF graph much more plainly

• makes it simpler to implement, e.g., storage



(c) Andreas L Opdahl, 2017

http://jena.apache.org/about_jena/architecture.html



(c) Andreas L Opdahl, 2017

Store API

• Jena Store API:
– by default, Jena stores Models in-memory
• ...as wrapped Graphs

– TDB stores the Graphs in persistent, indexed files
• it is an example of a triple store
• a DBMS for RDF graphs and data sets

– adapters can be written to connect Graphs to other 
types of external stores



(c) Andreas L Opdahl, 2017

Reasoner API

• Jena's reasoner API:

– uses semantic rules defined by RDFS and OWL to 
infer triples that are not explicitly stated in the graph

– makes these entailed triples available in the store just 
as if they had been added explicitly

– uses built-in rule engines for RDFS and OWL
– engines for application custom rules
– interfaces to external reasoners

• e.g., description logic (DL) engines through the 
DIG (DL Interface Group) protocol



(c) Andreas L Opdahl, 2017

Ontology and SPARQL API

• Jena's Ontology API:
– adding, removing, finding classes, individuals and 

properties

– parsing and writing OWL files
• Jena's SPARQL API:
– conforms to all of the published standards
– supports both SPARQL Query and Update
– queries/updates as strings or using constructors



(c) Andreas L Opdahl, 2017

Vocabulary APIs

• Jena's Vocabulary APIs:

– define classes for well-known vocabularies
– classes have static fields for the types, classes, 

properties etc. that are defined by the vocabulary
– the schemagen tool generates new vocabularies from 

RDF/OWL descriptions



(c) Andreas L Opdahl, 2017

Tools

• Fuseki:

– data publishing server
– present and update RDF models over the web using 

SPARQL and HTTP
• Other tools, e.g.:

– ARQ: command-line SPARQL motor
– TDB: indexed file storage system
– assemblers: setting up Jena Models from RDF specs
– schemagen: generating Java vocabulary classes from 

OWL or RDFS vocabularies
– eyeball: checking RDF (and OWL) models



(c) Andreas L Opdahl, 2017

Important packages

• org.apache.jena.rdf.model: The RDF API

• org.apache.jena.datatypes: Dealing with typed literals
• org.apache.jena.riot: Parsing and writing RDF. 

• org.apache.jena.tdb: The Store API
• org.apache.jena.ontology: The ontology API
• org.apache.jena.rdf.listeners: Listening for changes
• org.apache.jena.reasoner: The reasoner API

• org.apache.jena.shared: Utility classes 

• org.apache.jena.vocabulary: Predefined vocabularies. 
• org.apache.jena.xmloutput: Writing RDF/XML



(c) Andreas L Opdahl, 2017

Programming
project



(c) Andreas L Opdahl, 2017

Past projects

• Example projects:

– make your own muncipalities
– map of party financing
– reasoning over toll roads
– social assessment network
– LinkedMDB-portal
– tracking IT infrastructure
– music concert assistant
– quiz generator
– live semantic flight data
– semantic security service



(c) Andreas L Opdahl, 2017

Success factors

• Show that you can program with semantic technologies

– at least RDF, preferred RDFS, SPARQL, ...
– ...JSON-LD is an emerging alternative

• Use existing data sets (open semantic resources)
• Use existing vocabularies (and perhaps extend them)
• Simple presentation interface / dashboard
• Make the program run :-)
• Shortcuts can be ok (some manual steps, artificial data)
• Progress throughout the semester
• Final presentation (May 2nd), submission (May 22th)

Try to have an original idea



(c) Andreas L Opdahl, 2017

Example: combination projects

• Take two or more (semantic?) data sets

• Read them
• If necessary: lift them (i.e.: add semantic tags)
• Combine the data sets semantically
• Use them to derive new data/answer new queries

– impossible to answer before
– harder to answer before

• Mantainability:
– what happens when the data sets change?

• Dynamic data sets are more interesting that static ones!



(c) Andreas L Opdahl, 2017

Example: lifting projects

• Take a data set or a Web API (web service)

• Read it / access it over the net
• Lift it (i.e.: add semantic tags)

– using existing vocabularies as far as possible
• Show and implement use cases

– that were impossible before
– that were harder before
– that were less flexible before

• Focus on maintainability – making it easy run over time!



(c) Andreas L Opdahl, 2017

Other projects are very possible!

• Combination and lifting projects are the most common

• Other types are very possible, e.g.:
– semantic crawlers and spiders
– presentation / visualisation of graphs

• You are free to propose (almost) anything!

• How big should my project be?
– usually not a problem
– always possible to narrow the scope
– usually possible to expand the scope
– a bit easier to start “too big” than “too small”



(c) Andreas L Opdahl, 2017

Expectations to first meeting (February 7th)

• Alone or in groups of 2-3

– not plenary the first time
– first talk to Sigve (if you want), then with me

• Which data sets will you use?
• Which vocabularies will you use?
• What will you use them for?

– something that cannot be done today
– something that is harder to do today
– something that is harder to do flexibly today

• You may bring several alternatives
– but make sure you have a clear favourite


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

