INFOZ216:
Advanced Modelling

Theme, spring 2017:
Modelling and Programming
the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

Session 4: Application architecture

* Themes:
— application architecture for the web of data

— components of web-of-data applications
* programming against TDB in Jena
— basic OWL concepts (“RDFS Plus”)

Readings

 Sources:

— Allemang & Hendler (2011):
Semantic Web for the Working Ontologist,

* chapter 4 on application architecture

* chapter 8 on RDFS Plus
— materials at wiki.uib.no/info216

Expectations to the meeting Tuesday 7th

* Alone or in groups of 2-3
Which data sets will you use?
Which vocabularies will you use?
What will you use them for?

— something that cannot be done today

— something that is harder to do today

— something that is harder to do flexibly today
* You may bring several alternatives

— but make sure you have a clear favourite

Application architecture
for the Web of Data

- : - Web/mobile
Semantically RDF visualisers GUI HTMLS = > interfaces
tagged
resources _ o _ - . Web APIs/
i : Semantic application logic sEriEs
Extraction/ RDF SPARQL SPARUL ..~ Reasoning/
provision inferencing
- — Semantic -
o N Wrappers ~ resources Hand-written
Non-. Triple — |OWL‘ = semantic
semantic stores Other - data
Sl ~ databases (Locally or <
Y - over the net)
Scraping Lifting Lowering Serialising/
parsing
| ~ Files ‘ '\ﬁ/J

Parsing/serialising

* Reading from (“parsing”) and writing to (“serialising”)
standard RDF formats
* Why different formats?
— compactness, XML-dependency
— can the same data set be stored in many ways?
— machine versus human readability, abbreviations
— CURIEs ("Compact URIs”) with gname/prefix
— nested resources
— scope: only basic RDF or also, e.g., quads, rules , OWL...

 Built into all RDF- (and OWL-) programming frameworks
—e.g. Jena

Example: TURTLE

* “Terse RDF Triple Language”
— extends the N-Triple format
— restricts the Notation 3 (N3) -format
— not XML-based (like RDF/XML), but simpler to read
— supports prefixes (and bases)
— writing multiple predicates-objects for the same subject
— writing multiple objects for the same subject-predicate
— flexible notations for blank/anonymous nodes: [], [...]
— TriG extends TURTLE to support named graphs/quads
— SPARQL uses TURTLE-like syntax
— OWL is sometimes written in TURTLE
* but OWL also has its own notations!

Example: TURTLE

N-TRIPLE:

<http://r.e.x/Harald> <http://r.e.x/ektefelle> <http://r.e.x/Sonja> .
<http://r.e.x/Harald> <http://r.e.x/barn> <http://r.e.x/Haakon_Magnus> .
<http://r.e.x/Harald> <http://r.e.x/barn> <http://r.e.x/Martha_Louise> .

TURTLE:
<http://r.e.x/Harald> <http://r.e.x/ektefelle> <http://r.e.x/Sonja> ;
<http://r.e.x/barn> <http://r.e.x/Haakon_Magnus>,
<http://r.e.x/Martha_Louise> .

* semicolon (;) means “new predicate, same subject”
* comma (,) means “new object, same subject, predicate”
* period (.) means “new subject”

Example: TURTLE

TURTLE:
@prefix rex: <http://r.e.x/> .
<rex:Harald> <rex:ektefelle> <rex:Sonja> ;
<rex:barn> <rex:Haakon_Magnus> ,
<rex:Martha_Louise> .

* @prefix allows use of Compact URIs (“Curies’)
* @base allows use of IRI-fragments
* we will look at blank/anonymous nodes later...

Example: TriG

TriG:
@prefix rex: <http://r.e.x/> .
<rex:Royal> { <rex:Harald> <rex:spouse> <rex:Sonja> ;
<rex:kid> <rex:Haakon_Magnus> ,
<rex:Martha_Louise> . }
<rex:Mine> { <reg:Andreas> <reg:.spouse> <reg:Margareth> ;
<reg:kid> <reg:Jens_Christian> . }

* extends Turtle with named graphs wrapped in{ ... }

Important RDF serialisations

* RDF/XML (the original XML serialisation)

* TriX (XML-based, experimental, named graphs)

* N-TRIPLE (maximally simple format, has “canonical form”)
* NQ, NQUAD (extends N-TRIPLE with quads)

* TURTLE (“Terse RDF Triple Language”)
(builds on N-TRIPLE, human readable, SPARQL ++)

* TrG (TURTLE-extension, named graphs)
* Notation3, N3 (builds on TURTLE, supports rules, graphs ++)
* JSON-LD (“JavaScript Object Notation — Linked Data’)
* embedded formats:

— microformats, (eRDF —) RDFa, microdata
* In addition, OWL has its own serialisations...

— RDF/XML and TURTLE are sometimes used

Example: JSON
{

"homepage": "http://me.markus-lanthaler.com", <« Member
"name": "Markus Lanthaler",
"workplaceHomepage": "http://www.tugraz.at/"

N

Object Name Value

JavaScript Object Notation (JSON)
www. json.orq

Example: JSON
{

"homepage": "http://me.markus-lanthaler.com",
"name": "Markus Lanthaler", « ——— http://xmIns.com/foaf/0.1/name
"workplaceHomepage": "http://www.tugraz.at/"

This is the person's id!

}
\ http://xmins.com/foaf/0.1/workplaceHomepage
http://xmins.com/foaf/0.1/Person

How to represent semantic data in JSON?

Example: JSON-LD
{

"homepage": "http://me.markus-lanthaler.com",
"name": "Markus Lanthaler", « ——— http://xmIns.com/foaf/0.1/name

"workplaceHomepage": "http://www.tugraz.at/"

This is the person's id!

}
\ http://xmIns.com/foaf/0.1/workplaceHomepage
http://xmins.com/foaf/0.1/Person

{
‘@type” : “http://xmlns.com/foaf/0.1/Person”,

"@id": "http://me.markus-lanthaler.com"”,
"http://xmins.com/foaf/0.1/name": "Markus Lanthaler",
"http://xmIns.com/foaf/0.1/workplaceHomepage":

{ “@id” : "http://www.tugraz.at/" }

www. json-Id.org
Topic of lecture S05...

Scraping

* Making less structured data locally available in a
well-structured format

* Typically used on internet data:
— from less to more explicitly structured formats
— HTML, PDF, DOCX, TXT, tagged file formats
* Storing the result in, e.g., CSV, XML or JSON
* A useful “technical craft”
— not our focus
— using scripts, regular expressions
— check what others have done before (jsoup)!
— think continuous process — not once-off conversion!

Semantic lifting

* Making structured data semantic
— ...iImportant for us
* Often the next step after scraping

— ...or in parallel with scraping
— storing the result in, e.g., RDF, RDFS, OWL...

* Tasks:
1. creating triples (make everything (s, p, o)-triples)
2. creating graphs (one or several?)
3. selecting IRIs (standard IRIs as identifiers)
4. selecting vocabularies (standard IRIs as predicates)
5. selecting types (standard IRIs as resource types)
6. external linking (owl:sameAs)

Extraction

* Retrieving RDF triples from (semantically) tagged
resources

— e.g., microformats, (eRDF ->) RDFa, microdata
* Replaces scraping + lifting
— but is much simpler
* the tags already do much of the job
— open-source code is often available

Triple stores

* Basic software for persistent triple stores

— or: database management systems (DBMSs) for
RDF triples

— general DBMS properties and behaviours

* Examples:
— Apache Jena TDB (simple, file based, RDF-centric)
— Eclipse RDF4J (Sesame) (much used, RDF-centric)
— Ontotext GraphDB (OWLIM) (RDF4J compatible)
— Stardog (RDF4J compatible)

— OpenLink Virtuoso (much used, supports multiple
data models, large)

https://www.w3.org/wiki/LargeTripleStores

Why different triple stores?

* Afew important properties:
— capacity (a trillion triples (norsk: “billion”, 10'2))
— performance, security
— SPARQL version (1.0, 1.1, Update)
— SQL dependency, supports other data models?
— FLOSS, license, price
— in memory / on file
— local server or cloud-hosted
— single- / multi-thread and -server
— reasoning
— programming language
— built-in SPARQL or other endpoints?

Visualisation

* APls:
— general GUI APls
— graph drawing/editing APls
* Cloud based:
— graph and general visualisers
— e.g., embedded in web pages
— often SPARQL-based
* a SPARQL query extracts the dataset
* the SELECTed variables are used to draw
—graphs, bar charts, pie charts...
* e.g., http.//mgskjaeveland.github.io/sgvizler/

Endpoints

* Providing access to semantic resources over the net
using standard protocols

— typically HTTP, SPARQL, RDF, XML, JSON
— based on
* pure RDF resources, or
* “wrapped” resources, e.g., relational databases
* Also simple web interfaces for interactive use
—e.g., SNORQL (http://dbpedia.org/snorql/), Fuseki

Wrappers

* Wrapping existing structured data resources to present
them as semantic resources

— often relational data
* but also, e.g., spreadsheets, XML, JSON
— on-demand (live) semantic lifting
* attributes/columns are mapped to predicates
— read-only or read+update?
— handwritten or wrapper software
* e.g., D2RQ (http://d2rg.org)
— wrapped resources can be used locally
* or made accessible through an endpoint

Three-level architecture

* Raw data sets:

— available in a standard format

* perhaps virtually

— SPARQL end points, RDF files
* Abstract data representation (RDF):

— graph of nodes and arrows
* Queries:

— standard query languages

— based on the abstract data representation
* Enabled by the semantic technologies

Basic OWL
("RDFS-Plus™)

Inverse properties

* Properties can be each other's reverses (with subject and
object swapped), e.g.,

* rex:HaakonMagnus fam:hasParent rex:Harald .
* rex:Harald fam:hasChild rex:HaakonMagnus .
* P1 owl:iinverseOf P2:
* fam:hasParent owl:inverseOf fam:hasChild .
* owl:inverseOf owl:inverseOf owl:inverseOf .
* owl:.inverseOf a owl:ObjectProperty .
* Entailment rules:
* if P1 owl:inverseOf P2 then
* P2 owl:inverseOf P1 .
* if SP1 O.P1owlinverseOf P2 then
*OP2S.

Symmetric properties

* Some properties are their own inverse, e.g.,
* rex:Harald fam:marriedTo rex:Sonja .
* rex:Sonja fam:marriedTo rex:Harald .
* P rdf:type owl:SymmetricProperty:
* fam:marriedTo a owl:SymmetricProperty .
* owl:inverseOf a owl:SymmetricProperty .

* owl:SymmetricProperty rdfs:subClassOf
owl:ObjectProperty .

* Entailment rules:
* if P a owl:SymmetricProperty then
* P owl:iinverseOf P .
* if SPO. Paowl:SymmetricProperty then
*OPS.

Asymmetric, reflexive, irreflexive properties

* New in OWL2:

— both symmetric and asymmetric properties:
* fam:marriedTo rdf:type owl:SymmetricProperty .
* fam:hasChild rdf:type owl:AsymmetricProperty .
* many properties are neither!

— both reflexive and irreflexive properties:
* owl:sameAs rdf:.type owl:ReflexiveProperty .
* fam:hasChild rdf:type owl:IrreflexiveProperty .
* many properties are neither!

Transitive properties

* Some properties can form chains so that the result is the
property itself, e.g.:

* rex:HaakonMagnus fam:hasAncestor rex:Harald .
* rex:Harald fam:hasAncestor rex:Olav .
* rex:HaakonMagnus fam:hasAncestor rex:Olav .
* P a owl:TransitiveProperty:
* fam:hasAncestor a owl:TransitiveProperty .
* rdfs:hasSubClass a owl:TransitiveProperty .
* rdfs:hasSubProperty a owl: TransitiveProperty .
* Entailment rules:
* ‘ifSPX.XPO.PaowilTransitiveProperty then
*SPO

Functional properties

* Each subject can only have one object value for the functional
property, e,qg.,
* fam:mother a owl:FunctionalProperty .
* fam:birthdate a owl:FunctionalProperty .
* owl:FunctionalProperty rdfs:subClassOf owl:Property .
* “Entailment rule”:
*ifSPO1.SPO2. Pa owl:FunctionalProperty then
* O1 owl:sameAs O2 .
* ...for owl:ObjectProperties
* similar rule for owl:DatatypeProperties

Inverse functional properties

* Two different subjects cannot have the same object for an
inverse functional property, i.e.,

* fam:persNum a owl:InverseFunctionalProperty .

* owl:FunctionalProperty
owl:inverseOf owl:InverseFunctionalProperty .

* Inverse functional properties are unique
for each individual

* used for identifiers in OWL 1
* OWL 2 has a built-in ow/:hasKey property for identifiers:
* similar to inverse functional properties

* can only be used with OWL 2's
owl:NamedIndividuals

* ...not for anonymous owl:Individuals

Summary: more specific properties

* owl:inverseOf
* owl:SymmetricProperty, owl:AsymmetricProperty
* owl:ReflexiveProperty, owl:IrreflexiveProperty
* owl: TransitiveProperty
* owl:FunctionalProperty, owl:InverseFunctionalProperty
* owl:hasKey
* Also:
* negated properties (later)

* chained properties, e.g.:
fam:hasGrandparent
owl:propertyChainAxiom
(:hasParent :hasParent).

Individual equivalence

* Two individuals (with different IRI-s) may represent the same
thing:
* http://dbpedia.org/resource/Amanda_Plummer
* http://yago-knowledge.org/resource/Amanda_Plummer
* http://data.linkedmdb.org/resource/actor/34880
* 11 owl:sameAs I2:
* owl:sameAs a owl:ReflexiveProperty .
* owl:sameAs a owl.:SymmetricProperty .
* owl:sameAs a owl:TransitiveProperty .
* owl:sameAs is an equivalence relation:
* because it is reflexive, symmetric and transitive

Unique Name Assumption (UNA)

* If two resources have different names, do they necessarily
represent different things?

e RDF and OWL does not assume this!

* in RDF and OWL, we do not know whether resources
with different names represent different things or not

* We can use
* owl:sameAs — two resources represent the same thing!
* owl:differentFrom — they represent different things!

* Some ICT-languages and technologies use UNA, others do
not!

Individual difference

* A pair of individuals with different names (IRI-s) may
represent different things, e.g.,

* cal:Spring owl:differentFrom cal:Summer .

Individual difference

* A pair of individuals with different names (IRI-s)
may represent different things, e.g.,

— cal:Spring owl:differentFrom cal:Summer .

* A group of individuals with different names (IRI-s)
may represent different things, e.qg.,

— [a owl:AllIDifferent] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

) |

— owl:AllDifferent and owl:distinctMembers are special
constructs in OWL

* they must always be used together

— ...corresponds to pairwise owl:differentFrom between
all individuals in the ow/:distinctMembers-list

Equivalent classes

* Two classes (with different IRI-s) represent the same class:
* C1 owl:equivalentClass C2:

* owl:equivalentClass a owl:ReflexiveProperty .

* owl:equivalentClass a owl:SymmetricProperty .

* owl:equivalentClass a owl:TransitiveProperty .

* owl:equivalentClass is another equivalence relation:
* itis reflexive, symmetric and transitive

cas.Opaahl@ D.NH¥

Disjoint classes

* Some classes may not have the same individual as a member,
* fam:Male owl:disjointWith fam:Female .
* owl:disjointWith a owl:SymmetricProperty .
* ...butitis not transitive
* |.e., no individual can have both classes as its rdf:.type

* ...corresponds to owl:differentFrom between all pairs of
individuals in fam:Male and fam:Female

* Preferred in formal versions of OWL (no “punning”):
* owl:Class owl:disjointWith owl:Property .
* owl:Class owl:disjointWith owl:Individual .
* owl:Property owl:disjointWith owl:Individual .

Equivalent properties

* Two properties (with different IRI-s) represent the same
property:
* C1 owl:equivalentProperty C2:
* owl:equivalentProperty a owl:ReflexiveProperty .
* owl:equivalentProperty a owl:SymmetricProperty .
* owl:equivalentProperty a owl: TransitiveProperty .
* owl:equivalentProperty is another equivalence relation:
* itis reflexive, symmetric and transitive
* Also disjoint properties:
* :hasParent owl:propertyDisjointWith
‘hasSpouse .

Summary: sameness and difference

* Individuals:
* pairwise: owl:sameAs, owl:differentFrom
* groupwise difference: owl:AllDifferent
* Classes:
* pairwise: owl:equivalentClass, owl:disjointWith
* groupwise difference: owl:AllDisjointClasses
* Properties:
* pairwise: equivalentProperty, propertyDisjointWith
* groupwise difference: owl:AllDisjointProperties
* Membership in the groups:
* owl:distinctMembers (preferred) or owl:members

eas.Opadanl@ D.NHY¥

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

