Welcome to INFO216: Knowledge Graphs Spring 2023

Andreas L Opdahl <Andreas.Opdahl@uib.no>

About me

- Background:
 - siv ing, dr ing from NTNU
 - University of Bergen (since early 1990-ies)
 - part-time programmer / consulting for industry
 - several "Forskningsråd" and EU projects and networks
- Central research interest:
 - modelling of information systems and enterprises
 - semantic modelling and modelling languages
 - semantic technologies: ontologies and knowledge graphs
 - knowledge graphs for the news

INFO216: Knowledge Graphs

Recent project: BDEM

- Leveraging *Big Data for Emergency Management*
 - how can semantic technologies play a part?
 - developed a new Master course: INFO319 on Big Data

Recent project: **PROB**

Norwegian University of Science and Technology

telenor The University Of Sheffield.

Recent project: Transfeed

http://newsangler.uib.no

Ongoing project: News Angler

"Wolftech News supports and improves the workflows in a newsroom through mobile solutions for field work that are integrated with central systems for news monitoring, resource management, news editing, and multi-platform publishing"

- 1) Harvesting and analysing messages
- 2) Growing a semantic news graph
 - concepts, named entities, context...
- 3) Analysing working texts (stories)
- 4) Identifying background information
- 5) Prioritising and preparing
- 6) Journalistic and editorial preferences

Research: graph, searches, preparation, preferences, language, scaling

Active centre: Media Futures

Session 1: Introduction to Knowledge Graphs

- Themes:
 - what are knowledge graphs (KGs)?
 - what is the problem?
 - who uses them?
 - examples of important open KGs
 - exercise 1: Getting started ...
 - about INFO216
 - organisation of the course
 - practical information

Readings

- Sources:
 - Allemang, Hendler & Gandon (2020): Semantic Web for the Working Ontologist, 3rd edition: chapters 1-2
 - Blumauer & Nagy (2020): Knowledge Graph Cookbook – Recipes that Work: pages 27-55, 105-122 (*supplementary*)
- Materials in the wiki <http://wiki.uib.no/info216>:
 - Tim Berners-Lee talks about the semantic web
 - links to a few important open KGs

THE KNOWLEDGE GRAPH COOKBOOK RECIPES THAT WORK

AND HELMUT NACY

INFO216: Knowledge Graphs

What are knowledge graphs?

What is the problem?

- Lots of data around
 - internal, public, social, open
- Enormous potential to solve, simplify, speed up many critical information handling problem
 - but data are mostly not *linked* (think of a world wide web without document links!)
- What if linkable data could always be linked automatically?
- Tim Berners-Lee's semantic web vision (ca 2000)

Tim Berners-Lee: <http://www.youtube.com/watch?v=HeUrEh-nqtU>

Tim Berners-Lee Inventor of the World Wide Web (WWW, 1989)

INFO216: Knowledge Graphs

What is the problem?

- Lots of data around
 - internal, public, social, open
- Enormous potential to solve, simplify, speed up many critical information handling problem
 - but data are mostly not *linked* (think of a world wide web without document links!)
- What if linkable data could always be linked automatically?
- The *semantic web vision* (ca 2000)

- Need standard ways of representing data and knowledge:
 - technical
 - standard formats, languages, and techniques to share data
 - semantic
 - standard identifiers and terms to share meaning
 - formal
 - support formal *rules and reasoning*

INFO216: Knowledge Graphs

 A graph of nodes connected by directed edges

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values
- Edges represent *relations*

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values
- Edges represent *relations*
- Each node–edge–node triple represents a fact

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values
- Edges represent *relations*
- Each node–edge–node triple represents a fact
 - subject-predicate-object

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values
- Edges represent *relations*
- Each node–edge–node triple represents a fact
 - subject–predicate–object
 - head-relation-tail

INFO216: Knowledge Graphs

- A graph of nodes connected by directed edges
- Nodes can represent resources or values
- Edges represent *relations*
- Each node–edge–node triple represents a fact
 - subject–predicate–object
 - head-relation-tail
- A knowledge graph represents knowledge as triples connected by nodes

INFO216: Knowledge Graphs

INFO216: Knowledge Graphs

- Technical:
 - standard *formats* for storing and exchanging graphs
 - including types of values (strings, numbers, times, dates, etc.)
 - specialised databases and standard query languages
 - APIs for all major programming languages

(c) Andreas L Opdahl, 2023

- Technical:
 - standard *formats* for storing and exchanging graphs
 - including types of values (strings, numbers, times, dates, etc.)
 - specialised databases and standard query languages
 - *APIs* for all major programming languages
- Semantic:
 - large repositories of *unique identifiers* for individual resources
 - vocabularies with unique identifiers for resource types and relations
 - graph embeddings and graph neural networks for machine learning

- Technical:
 - standard *formats* for storing and exchanging graphs
 - including types of values (strings, numbers, times, dates, etc.)
 - specialised databases and standard query languages
 - *APIs* for all major programming languages
- Semantic:
 - large repositories of *unique identifiers* for individual resources
 - vocabularies with unique identifiers for resource types and relations
 - graph embeddings and graph neural networks for machine learning
- Formal:
 - rule languages and inference engines
 - formal logic systems and reasoning engines

(c) Andreas L Opdahl, 2023

Why knowledge graphs?

- Ease of exchanging, reusing information
 - inherent semantics become clearer
 - less dependency on context
- Ease of *interlinking*, *enriching* information
 - semantic data can be combined in new ways
 - open reference datasets
 - general and specialised knowledge bases
- Ease of extending
 - no pre-defined data schemas ("schema-on-read")
 - easy to add new types of resources and new relations
- Well-matched with the needs of big data and machine learning!

INFO216: Knowledge Graphs

Google **Tencent** 腾讯 Who is > Bing Bai de 百度 Pub Med using this? Alibaba.com facebook All the big • ANTONI LEEUWENHOEK players! The TSCHE New Hork Google's • MAASTRO OTHEK BBC Times Knowledge europeana Graph REUTERS Microsoft's • **€)EPA** Satori Environmental Protection National Library of Sweden Amazon's • RENAULT IOS Product Graph European SIEMENS Press Walmar Commission ...and (almost) • BEST Deloitte everyone else SPRINGER NATURE amazon.com accenture ELSEVIER

From Frank van Harmelen's keynote at CAiSE 2018

Knowledge graphs at Amazon (\rightarrow S06)

- Let shoppers find the best products that fit their needs
 - allow greater variation in search terms
 - allow complex queries
- Ambition: to structure all of the world's information as it relates to everything available on Amazon
- Describe every product on Amazon
 - both products and non-products
 - both concrete and abstract concepts
 - link related entities, both internal and external
- Enhanced customer experience
 - visit Amazon to see what's new or interesting
 - discover ways to simplify and enrich their lives

INFO216: Knowledge Graphs

Knowledge graphs everywhere

- BBC's content management, ontologies, BBC Things
- Google, Bing, Yahoo... (schema.org) (2011)
- Google's Knowledge Graph (2012), Microsoft's Satori
- Facebook's Open Graph and Graph Search (2013)
- Thomson Reuters, Bloomberg...
- Uber Eats' food graph

(c) Andreas L Opdahl, 2023

Some knowledge graphs we will look at in INFO216

- You have already seen Google's KG many times:
 - the "knowledge panels" in search results
- Wikidata (https://www.wikidata.org/)
 - part of the Wikimedia family, feeds factual information to Wikipedia
- DBpedia (https://www.dbpedia.org, https://dbpedia.org/page/Bergen)
 - extracts factual information from Wikipedia
- GeoNames (https://www.geonames.org/)
 - global database of place names (toponyms), relations and types
- BabelNet (https://babelnet.org/)
 - a multi-lingual dictionary and thesaurus
- Linked Open Vocabularies (LOV, https://lov.linkeddata.es/dataset/lov/)
 - a collection of knowledge graphs that describe vocabularies (also called ontologies) for other knowledge graphs

INFO216: Knowledge Graphs

Exercise 1: Getting started with VSCode, Python and RDFlib

INFO216: Knowledge Graphs

How can we represent semantic KGs?

- Resource Description Framework (RDF \rightarrow S02)
- RDF models (KGs) consist of statements (triples)
 - of subject predicate object.
 - or subject predicate literal.

(c) Andreas L Opdahl, 2023

How can we represent semantic KGs?

- Resource Description Framework (RDF \rightarrow S02)
- RDF models (KGs) consist of statements (triples)
 - of subject predicate object.
 - or subject predicate literal.
- The subject:
 - must be a resource
 - physical, informational, conceptual...
- The predicate:
 - must be a property (subtype of resource)
- The object:
 - is either a resource
 - or a *literal* (or a *value*: string, number... not a resource)

How can we represent semantic KGs?

- Resource Description Framework (RDF \rightarrow S02)
- RDF models (KGs) consist of statements (triples)
 - of subject predicate object.
 - or subject predicate literal.
- Serialisations, e.g., in *Turtle*:

@prefix ex: <http://example.org/> .

ex:Roger_Stone ex:name "Roger Stone" ; ex:occupation ex:lobbyist ; ex:significant_person ex:Donald_Trump .

ex:Donald_Trump ex:name "Doald Trump" . Uniform Resource Identifiers (URIs) identify resources, including types and relations

INFO216: Knowledge Graphs

RDFLib graphs

- RDFLib:
 - an API for programming RDF and SPARQL in Python
 - simple, powerful and pythonic
 - parsers and serialisers for most RDF formats
 - a Graph interface:
 - a graph holds an RDF model
 - is a Python collection (set) of triples
 - supports adding, removing, listing, and searching for triples
 - supports writing to and reading from RDF files
 - >>> from rdflib import Graph
 - >>> model = Graph()

INFO216: Knowledge Graphs

RDFLib resources

- URIRef:
 - a node with a URI (represents resources, types, and properties)

>>> from rdflib import URIRef
>>> donaldTrump = URIRef('http://example.org/Donald_Trump')

- Namespace:
 - a more compact way to create resources, types, and properties

>>> from rdflib import Namespace
>>> ex = Namespace('http://example.org/')
>>> donaldTrump = ex.Donald_Trump

INFO216: Knowledge Graphs

RDFLib triples

- Triples / statements: •
 - ordinary 3-item Python tuples
 - immutable sequences

>>> triple = (s, p, o) # creates a triple # returns the subject, etc. >>> s[0]

add/remove triples to/from graph

>>> g.add((res1, prop, res2))

- close persisted model:

>>> q.close()

or: >>> g.add((res, prop, lit))

INFO216: Knowledge Graphs

RDFLib literals

- Literal:
 - a typed value
 - >>> from rdflib import Literal
 - >>> lit = Literal('President of the United States')
 - strings can be language-tagged

>>> lit = Literal('President of the United States', 'en') >>> lit = Literal('美利堅合眾國的國家元首、政府首腦兼三軍統帥' , 'zh-ch')

(c) Andreas L Opdahl, 2023

Serialising and parsing

• Serialising:

>>> g.serialize(destination=*fileNameStr,* format='ttl')

>>> ttl_str = g.serialize(format='ttl').decode()

>>> ttl_str = g.serialize(format='json-ld').decode()

• Parsing:

>>> g.parse(location=fileNameStr, format='ttl')
>>> g.parse(source=webURLStr, format='ttl')
>>> g.parse(data=pythonStr, format='ttl')

(c) Andreas L Opdahl, 2023

Listing statements

- Retrieving statements (triples):
 - >>> for triple in g:
 - >>> do_something(triple) # s = triple[0], p = triple[1], o = triple[2]
 >>> for s, p, o in g:
 - >>> do_something(s, p, o)
 - >>> for s, p, o in g.triples((sub, pred, obj)):
 - >>> do_something(s, p, o) # sub, pred, obj can be None
 - >>> for s, p, o in g[sub : pred : obj]:
 - >>> do_something(s, p, o) # sub, pred, obj can be empty:

s, p, o must match

Python overloading!

(c) Andreas L Opdahl, 2023

About INFO216

INFO216: Knowledge Graphs

Purpose

- To learn theories, techniques, tools, and best practices for managing knowledge graphs.
- To acquire understanding and skills for programming applications that use and produce such data and metadata.
- To learn about existing sources of and standards for big, open, and semantic data.
- To gain practical experience in developing knowledge graph-based applications using technologies such as RDF, RDFS, OWL, SPARQL, and JSON-LD.

Curriculum

- Course book (*the whole book is mandatory*):
 - Allemang, Hendler & Gandon (2020).
 Semantic Web for the Working Ontologist,
 Effective Modeling for Linked Data, RDFS and OWL (Third Edition)
- Supplementary course book (*suggested, not mandatory*):
 - Blumauer & Nagy (2020).
 The Knowledge Graph Cookbook Recipes that Work
- Additional readings (both *mandatory* and *suggested*) will be made available in the course wiki: https://wiki.uib.no/info216
- The lectures and lectures notes are also *mandatory* parts of the curriculum.

INFO216: Knowledge Graphs

Practical

- 14 lectures:
 - Tuesdays 1215-1400
- 14 lab weeks:
 - 2 hours of weekly lab groups
 - starting this week, no labs week 10 and 14 (Easter)
 - seminar/lab leader: Robin Johansen Bøe <Robin.Boe@student.uib.no>
- Evaluation:
 - individual, written 4-hour exam
- Requirements:
 - participation in 75% of labs
- Course wiki:
 - http://wiki.uib.no/info216

(c) Andreas L Opdahl, 2023

Lecture plan (tentative)

- 1. Introduction to KGs
- 2. Representing KGs (RDF)
- 3. Querying and updating KGs (SPARQL)
- 4. Open KGs 1
- 5. Open KGs 2
- 6. Enterprise KGs
- 7. Rules (RDFS)

- 8. Ontologies (OWL)
- 9. Vocabularies
- 10. Reasoning about KGs (DL)
- 11. Formal ontologies (OWL-DL)
- 12. KG embeddings 1
- 13. KG embeddings 2
- 14. Knowledge engineering

You learn KGs best through practice: do the lab exercises thoroughly!

(c) Andreas L Opdahl, 2023

Next week: Representing KGs (more about RDF)

INFO216: Knowledge Graphs