Welcome to INFO216: Knowledge Graphs Spring 2024

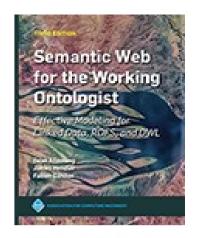
Andreas L Opdahl <Andreas.Opdahl@uib.no>

Session 7: Enterprise Knowledge Graphs

- Themes:
 - Open Knowledge Graphs (← S05-S06)
 - Linked Open Data resources / datasets
 - Wikidata, DBpedia, GeoNames, GDELT, WordNet, BabelNet, ConceptNet...
 - Enterprise Knowledge Graphs (EKGs) (→ S07)
 - Google's Knowledge Graph
 - Amazon's Product Graph
 - Bosch' Line Information System (LIS)
 - the News Hunter platform

Readings

- Sources (suggested):
 - Blumauer & Nagy (2020):
 Knowledge Graph Cookbook Recipes that Work:
 parts 2 and 4
- Resources in the wiki http://wiki.uib.no/info216:
 - Introducing the Knowledge Graph: Things not Strings,
 Amit Singhal, Google (2012)
 - A reintroduction to our Knowledge Graph and knowledge panels, Danny Sullivan, Google (2020)
 - How Amazon's Product Graph is helping customers find products more easily, Arun Krishnan, Amazon (2018)



Is anyone really using Knowledge Graphs?

Yes!

Tencent 腾讯

National Library

ANTONI

VAN LEEUWENHOEK

REUTERS

Deloitte

accenture

Yes!

- But...
 - not quite as in the semantic web vision
 - not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

Yes!

- But...
 - not quite as in the semantic web vision
 - not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

Many of these ideas are widely adopted too, such as:

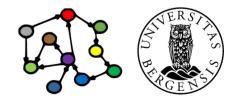
- microdata / schema.org
- RDF / SPARQL / ... for semantic data exchange
- graph representations in general

Yes!

- But...
 - not quite as in the semantic web vision
 - not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

Similar ideas, adapted to new uses and business contexts, using a combination of standard and other technologies

Google's Knowledge Graph



Google's Knowledge Graph

- Google Knowledge Graph (from 2012)
 - "Things, not Strings"
 - seeded from Freebase
 - facts from Wikipedia, Wikidata, CIA World Factbook
 - a growing number of other sources
 - used internally for many purposes
 - visible in Google Search results (Knowledge Panels)
 - question answering in Google Assistant / Home
 - semantic API (https://developers.google.com/knowledge-graph)

Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

Google's Knowledge Graph

- Coverage:
 - claimed
 - 18 billion facts (18G, norsk: 18 milliarder) about 570 million entities soon after start
 - 70 billion facts claimed in (2016)
 - 500 billion facts about five billion entities (2020)
 - ...perhaps 3 times the size of the LOD cloud
 - from English to multiple languages
- Critiques:
 - source attribution, incl. Wikipedia / Wikidata
 - zero-click searches (around 25% of desktop searches)

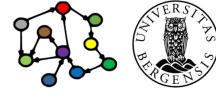
Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

Google's Knowledge Vault Project

- Attempt to extend the Knowledge Graph
 - covered resources not from open semantic datasets
 - facts extracted from the whole web
 - NLP of text documents
 - HTML trees and tables
 - human annotated pages (e.g., schema.org)
 - probabilistic reasoning
 - graph-based priors
 - knowledge fusion
 - not put in production (did not achieve 99% accuracy)

Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

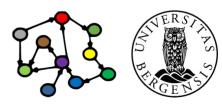
Amazon's Knowledge Graph



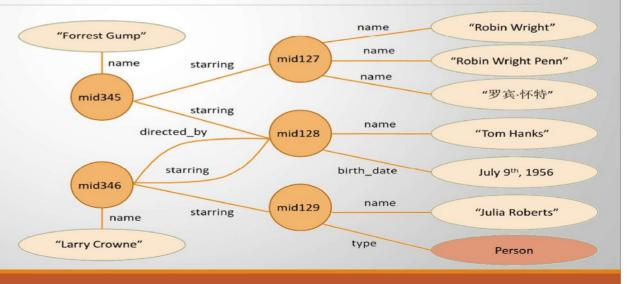
(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

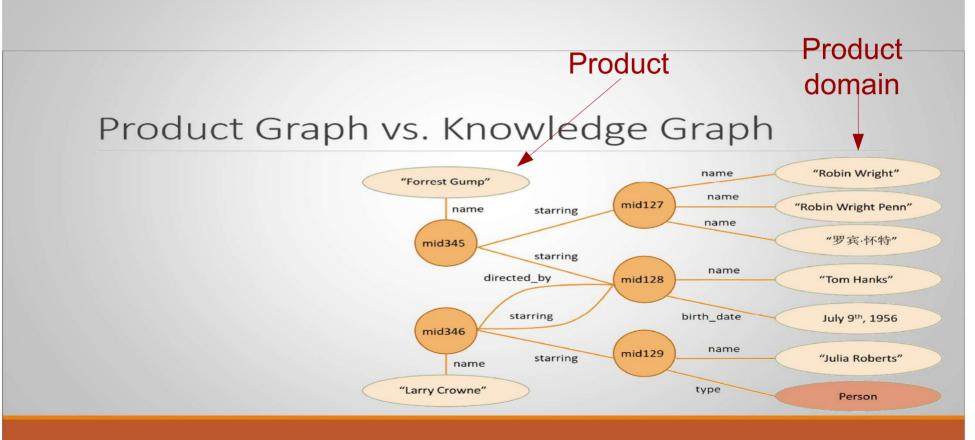
Amazon's ambition (← S01)

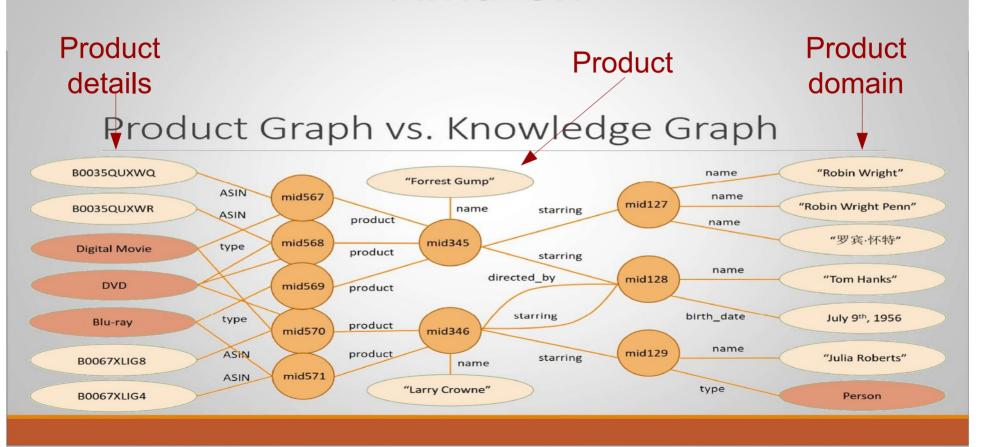
- Let shoppers find the best products that fit their needs
 - allow greater variation in search terms
 - allow complex queries
- Ambition: to structure all of the world's information as it relates to everything available on Amazon
- Describe every product on Amazon
 - both products and non-products
 - both concrete and abstract concepts
 - link related entities, both internal and external
- Enhanced customer experience
 - visit Amazon to see what's new or interesting
 - discover ways to simplify and enrich their lives

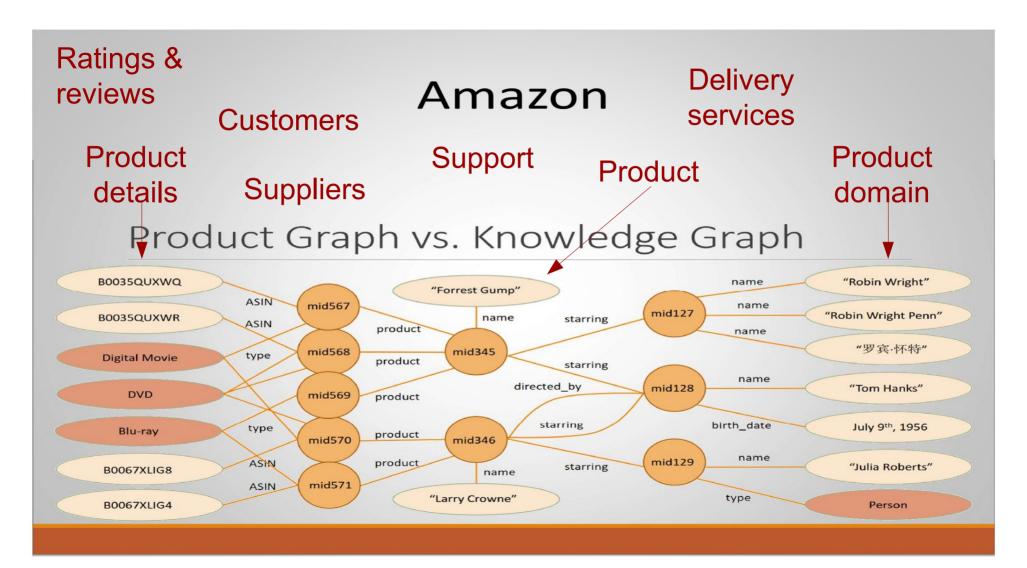


Product Graph vs. Knowledge Graph









Frank van Harmelen (2018): Keynote at CAiSE'18

"We aim at building an authoritative knowledge graph for all products in the world"

Xin Luna Dong, Amazon, at WSDM conf. Feb 2018 Architecture Search, QA, Graph **Embedding** Recommen-Graph Querying Generation dation Conversation **Applications** Mining **Amazon Neptune Product Graph** Graph Schema Entity Knowledge Construction Knowledge Mapping Cleaning Cleaning Catalog Ontology Ingestion Knowledge Extraction Extraction Collection

Challenges

- Ingest product-related information from Amazon's detail pages and from the Internet at large
 - product information is largely unstructured
 - trustworthiness of sources
- Machine learning techniques for
 - knowledge extraction, linkage and cleaning
 - distantly supervised learning
 - train on more structured subset of data
 - run on larger unstructured data space
 - open information extraction
 - graph mining techniques to identify interesting hidden patterns (buying product-X → buying product-Y)



Amazon AutoKnow

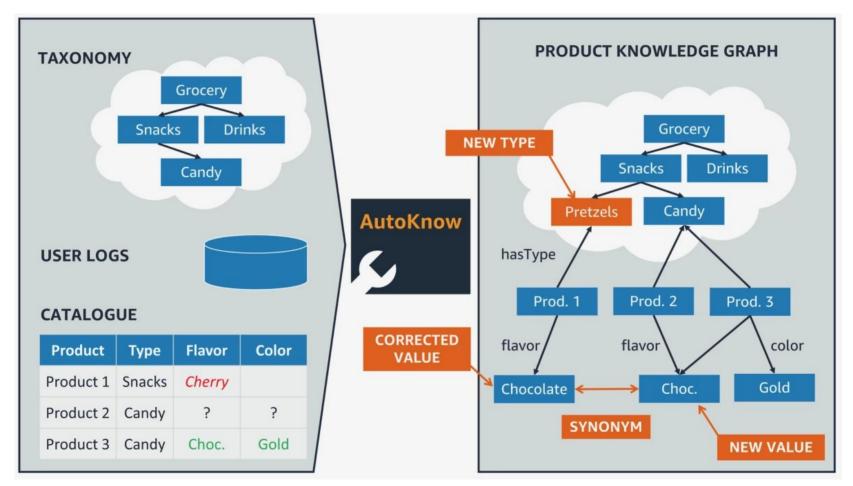
How to build a Product KG?

- Amazon's AutoKnow:
 - a suite of techniques for automatically augmenting product KGs with both structured data and data extracted from free-form text sources
- Tasks:
 - combining data from different sources into a product graph
 - adding new product types to the taxonomy
 - adding new values for product attributes
 - correcting errors
 - identifying synonyms
- "With AutoKnow, we increased the number of facts in Amazon's consumables product graph (which includes the categories grocery, beauty, baby, and health) by almost 200%, identifying product types with 87.7% accuracy."

Challenges

- Retail information is hard:
 - the number of product types tends to grow as the graph expands
 - each product type has its own set of attributes
 - attributes vary widely, e.g.,
 color and texture versus battery type and effective range
 - the types of relationships between data items are essentially unbounded
 - vital product information exists in free-form text, e.g.,
 user reviews or question-and-answer sections

AutoKnow architecture



AutoKnow architecture

- Inputs:
 - an existing product taxonomy
 - a graph structure
 - a product catalogue
 - structured information, such as labelled product names
 - unstructured product descriptions
 - user logs
 - free-form textual product-related information: customer reviews, product-related questions and answers; and product query data
- Output:
 - Amazon's product graph

AutoKnow architecture

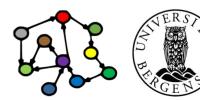
- Five modules in two suites:
 - Ontology suite
 - 1) taxonomy enrichment: identify and classify new entity types
 - 2) relation discovery: identifies (1) attributes of products, (2) their range of possible values, and (3) their importance to customers
 - Data suite
 - 3) data imputation: uses the entity types and relations to determine whether free-form text associated with products contains any information missing from the graph
 - 4) data cleaning: sorts through existing and newly extracted data to see whether any of it was misclassified
 - 5) synonym finding: identifies entity types and attribute values with identical/similar meaning

Taxonomy enrichment module

- Identification of new product types:
 - ML model labels substrings of product titles in the source catalogue.
 - also labels substrings that indicate product attributes
 - for use during the relation discovery step.
 - trained on product descriptions with hand-labelled types and attributes
- Classification of product types according to their hypernyms (i.e., the broader product categories that they fall under):
 - ML classifier uses data about customer interactions, such as which products customers viewed or purchased after a single query
 - trained on product data hand-labelled according to an existing taxonomy

Relation discovery module

- Classification of product attributes by two criteria and ML classifiers:
 - whether the attribute applies to a given product
 - example: flavour (an attribute) applies to food but not to clothes
 - how important the attribute is to buyers of a particular product
 - example: brand name (an attribute) is more important to buyers of snack foods than to buyers of produce
- Input data:
 - product descriptions from providers
 (attribute frequencies per product and per product type)
 - reviews and Q&As from customers (attribute frequencies per product)
- Trained on manually-labelled data that match attributes with products

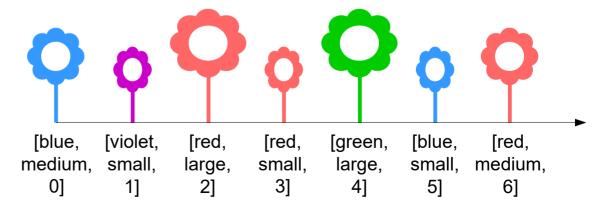


Data imputation module

- Identification of terms in product descriptions
 - that may fit the new product and attribute categories
 - but which are not yet represented in the KG
 - the product type is included among the inputs
- Word embeddings represent descriptive terms as points in a vector space
 - the vector space is trained to group together related terms
 - some terms are already labelled with a product type or attribute they represent
 - if many labelled terms in the same cluster share the same label,
 then the unlabelled terms in the same cluster have those labels too

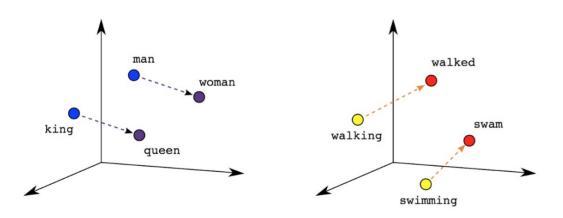
- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph in in WordNet)
- Formally (e.g., using an OWL ontology)
- As vectors in a latent semantic space!
- Example:
 - FlowerWorld™
 - "Everything is a flower!"
 - a flower has three attributes:
 - colour
 - size
 - position

Everything in FlowerWorld™ can be uniquely described by its position along three dimensions!

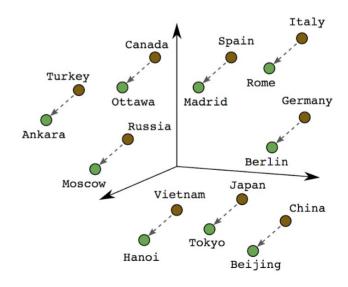


- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph in in WordNet)
- Formally (e.g., using an OWL ontology)
- As vectors in a latent semantic space!
- (Our conceptualisations of) Things in the "real world":
 - a bit more complex...
 - not fully describable by positions along dimensions
 - but perhaps we can describe them usefully by adding more dimensions?
 - but which dimensions to add?
 - use machine learning / neural networks to analyse large text corpora!

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph in in WordNet)
- Formally (e.g., using an OWL ontology)
- As vectors in a latent semantic space!



These examples only show a few selected axes...



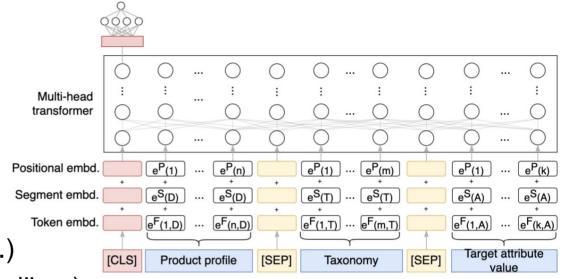
Male-Female Verb Tense

Country-Capital

- By designation (e.g., textual descriptions in a dictionary)
- As nodes in a network (e.g., in a knowledge graph in in WordNet)
- Formally (e.g., using an OWL ontology)
- As vectors in a latent semantic space!
 - normalised values: [0.01 0.62 0.03 ... 0.41]
 - important use: as inputs to deep neural networks that process NL text
 - trained, e.g., so that similar words are close to one another
 - ...so that position differences between words can be systematic
 - [Paris] [France] + [Italy] ≈ [Rome]
 - ...so that position differences between words can represent relations
 - [J. K. Rowling] + [influenced by] ≈ [J. R. R. Tolkien]

Data cleaning module

- Detecting bad attribute values
 - using a transformer model
 - inputs:
 - NL product description
 - an attribute (e.g., flavour...)
 - an attribute value (e.g., vanilla...)
 - is the attribute-value pair aligned with the product?
- Trained on
 - positive examples: valid attribute-value pairs that occur across many instances of the product type (e.g., all ice cream types have flavours)
 - negative examples: generated by random replacement of values in valid attribute-value pairs



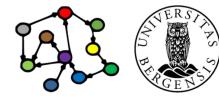
Synonym finding module

- Analysis of product and attribute sets to find mergeable KG nodes
 - customer interaction data to identify items that were viewed during the same queries
 - their product and attribute descriptions are candidate synonyms
 - a combination of techniques to filter the candidate terms
 - edit distance
 - neural network

Ongoing work

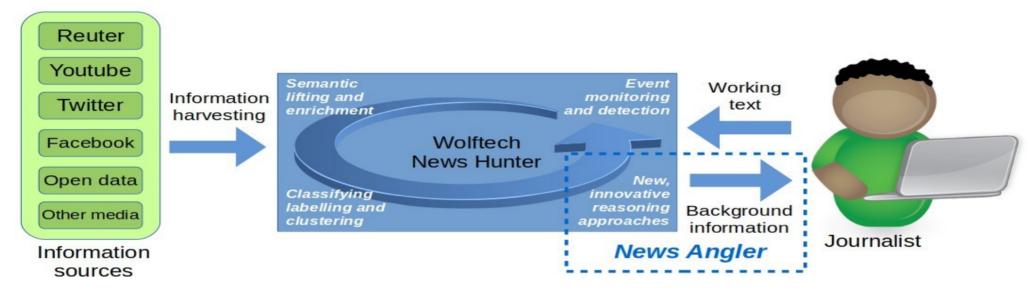
- Open questions:
 - how to handle products with multiple hypernyms (i.e., products that have multiple "parents" in the product hierarchy)?
 - how to clean data before it's used to train our models?
 - how to use image data + textual data to improve model performance

The News Hunter Platform



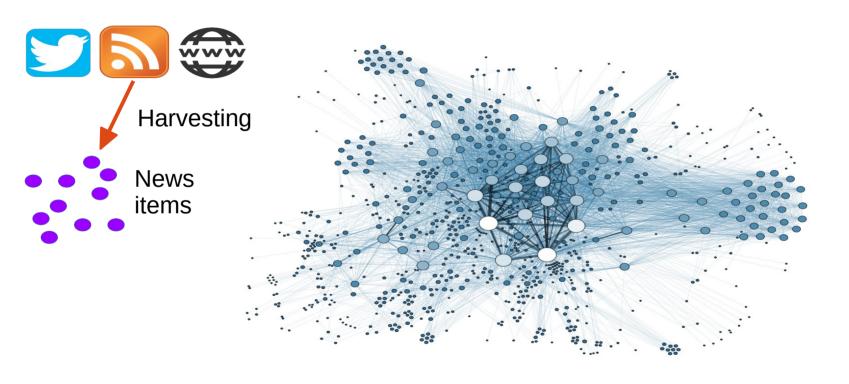
(c) Andreas L Opdahl, 2024 INFO216: Knowledge Graphs

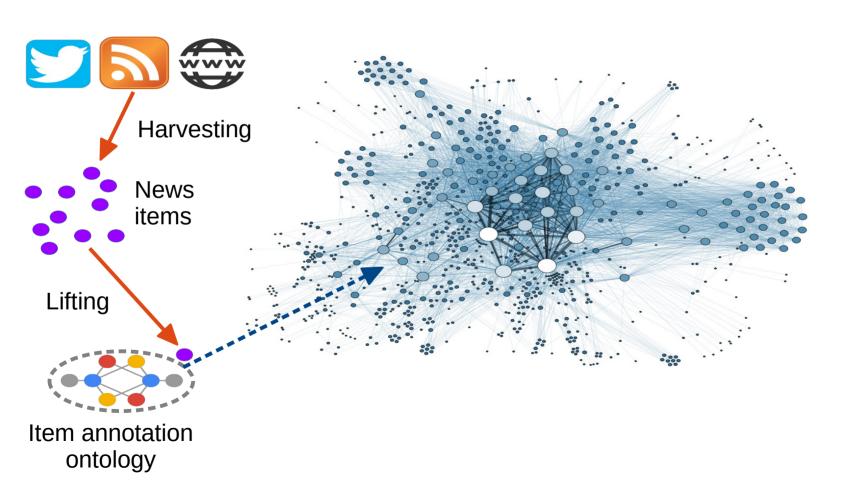
Ongoing project: News Angler

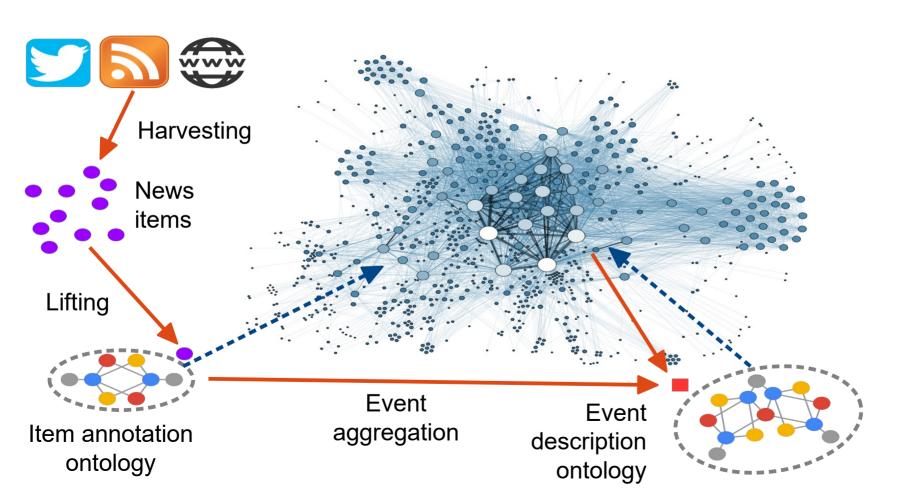


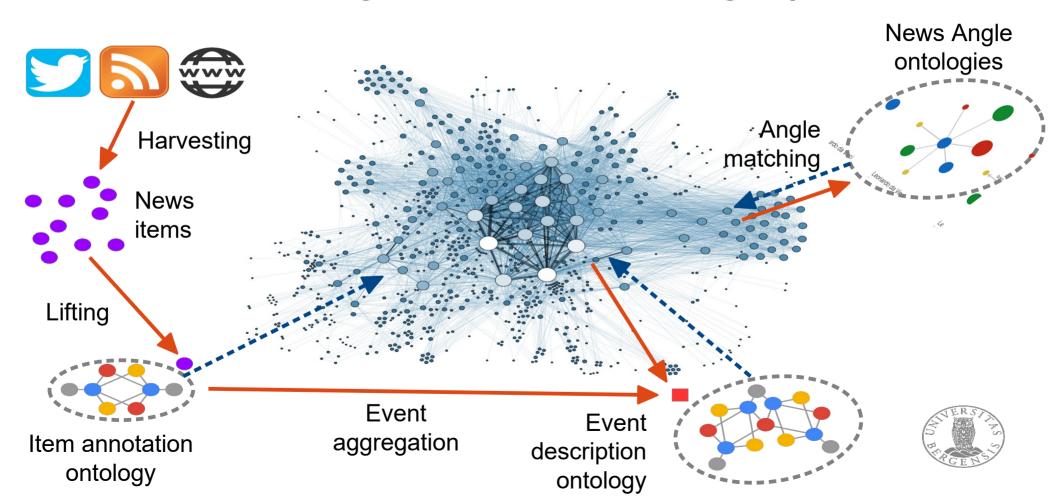
"Wolftech News supports and improves the workflows in a newsroom through mobile solutions for field work that are integrated with central systems for news monitoring, resource management, news editing, and multi-platform publishing"

- 1) Harvesting and analysing messages
- 2) Growing a semantic news graph
 - concepts, named entities, context...
- 3) Analysing working texts (stories)
- 4) Identifying background information
- 5) Prioritising and preparing
- 6) Journalistic and editorial preferences Research: graph, searches, preparation, preferences, language, scaling



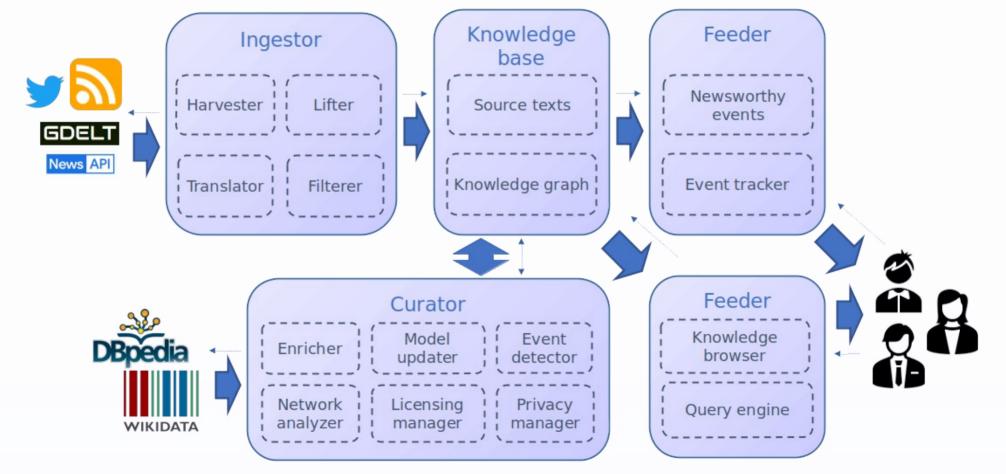






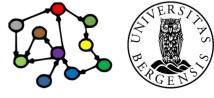
The News Hunter architecture

Harvesting news-related information from social media and other sources; analysing, organising, enriching and presenting news-related information to journalists. Implemented state-of-the-art big data and distributed technologies.



Services

- Written in Python 3.8-3.9
- All services are deployed in docker containers
- FastAPI as the main python library for writing APIs



Services - harvesters

- Twitter harvester: connects to the Twitter API to read streams of tweets from news organizations accounts
- RSS harvester: downloads RSS feeds from news organisations
- GDELT harvester: gets the events and GKG datasets from GDELT projects
- NewsAPI harvester: use NewsAPI.org API to get real-time feeds of news from thousands of news outlets

Services - lifters

Lifters for news and GDELT that use NER to represent the information into knowledge graphs

- DbpediaSpotlight NEL: using DBpediaSpotlight for named entity linking
- SpaCy NEL: using SpaCy for named entity linking
- Kolitsas NEL: using Kolitsas algorithm for named entity linking

The News Hunter infrastructure

Service nodes

Web scraping, API, user interfaces, semantic lifting processes

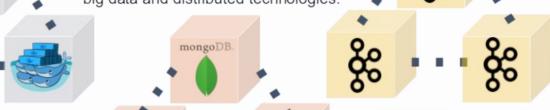
- · Light-to-medium processing
- Pvthon, REST API. ...

Management nodes

Service orchestration and monitoring

- Lighter processing
- Docker Swarm

Harvesting news-related information from social media and other sources; analysing, organising, enriching and presenting news-related information to journalists. Implemented using state-of-the-art big data and distributed technologies.



Computationintensive nodes

Complex AI services and training processes.

- · CPU, RAM, GPU intensive
- Python, spaCy, ...

Message exchange, aueueina (TBD)

Lighter processing

- Kafka

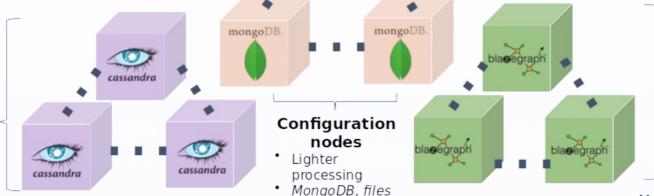
Message

queue nodes

Raw data nodes

Distributed storage for raw data files (textual. multimedia)

- Disk intensive
- Cassandra, ...



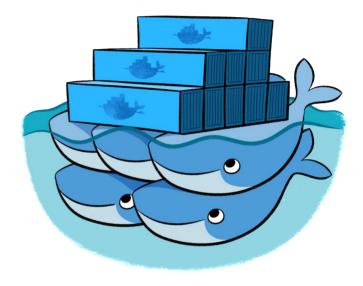
Knowledge graph nodes

News semantic representation storage.

- Disk, CPU and RAM intensive
- Blazegraph

M. Gallofré Ocaña & A.L. Opdahl (2021)

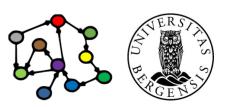
Cloud infrastructure deployment tools



Slide by Marc Gallofré Ocaña

Technologies

- Docker Swarm
- Kafka (as pub/sub message queue to communicate between all services in the platform)
- Zookeeper
- Cassandra (storing raw data in a distributed cluster)
- Blazegraph (knowledge graph of news and events)
- MongoDB (configuration and metadata)
- All of them have been deployed using Docker containers



News Hunter Platform:

- 38 vCPUs
- 152GB RAM
- 20TB Disk
- 17 Instances

- 1 Launcher instance for deploying the cloud infrastructure:
- 1 vCPU
- 4 GB RAM

Next week: Rules (RDFS)