
INFO216:
Advanced Modelling

Theme, spring 2018:
Modelling and Programming

the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

Session S06: RDFS Plus
 Themes:

– what and why?
– basic OWL constructs (“RDFS-Plus”)

• Programming:

– Jena OntModel class

– OntClass, Individual, ObjectProperty, DatatypeProperty
– OWL class that defines OWL-terms / IRIs
– OntModelSpec class that defines reasoner types

Readings

• Allemang & Hendler (2011):
Semantic Web for the Working Ontologist
– chapter 8 (“RDFS Plus”)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

Web Ontology
Language (OWL)

RDFS is a useful starting point...

• But there's lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 activePlayers, a VolleyballTeam 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!

Basic idea

• Web Ontology Language (OWL):
– builds on RDF and RDFS

– uses classes and properties from RDF and RDFS

– adds precision and formality

• Basic OWL-concepts:

– owl:Class rdfs:subClassOf rdfs:Class .

– “owl:Property” rdfs:subClassOf rdf:Property .
– “owl:Individual” rdfs:subClassOf rdfs:Resource .

good practice: keep these three disjoint, i.e., no
resource has more than one of them as rdf:type

• “owl:Individual” is actually called owl:Thing

http://www.w3.org/TR/owl2-rdf-based-semantics/

What does OWL offer?

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• (more on this later)

Reuses or specialises RDFS

• Reused in OWL:
– rdf:type, rdf:Property, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:domain, rdfs:range
– ...and lots of other stuff...

• Renamed by OWL:

– owl:Thing owl:sameAs rdfs:Resource .

• Specialised by OWL:
– everything else in OWL specialises

something in RDFS

Basic OWL
(“RDFS-Plus”)

Inverse properties

• Properties can be each other's reverses (with subject and
object swapped), e.g.,

– rex:HaakonMagnus fam:hasParent rex:Harald .

– rex:Harald fam:hasChild rex:HaakonMagnus .

• P1 owl:inverseOf P2:

– fam:hasParent owl:inverseOf fam:hasChild .

– owl:inverseOf owl:inverseOf owl:inverseOf .

– owl:inverseOf a owl:ObjectProperty .

• “Entailment rules”:

– if P1 owl:inverseOf P2 then

• P2 owl:inverseOf P1 .

– if S P1 O . P1 owl:inverseOf P2 then

• O P2 S .

Symmetric properties

• Some properties are their own inverse, e.g.,

– rex:Harald fam:marriedTo rex:Sonja .

– rex:Sonja fam:marriedTo rex:Harald .

• P rdf:type owl:SymmetricProperty:

– fam:marriedTo a owl:SymmetricProperty .

– owl:inverseOf a owl:SymmetricProperty .

– owl:SymmetricProperty rdfs:subClassOf
owl:ObjectProperty .

• Entailment rules:

– if P a owl:SymmetricProperty then

• P owl:inverseOf P .

– if S P O . P a owl:SymmetricProperty then

• O P S .

Asymmetric, reflexive, irreflexive properties

• New in OWL2:

– both symmetric and asymmetric properties:

• fam:marriedTo rdf:type owl:SymmetricProperty .

• fam:hasChild rdf:type owl:AsymmetricProperty .

• many properties are neither!

– both reflexive and irreflexive properties:

• owl:sameAs rdf:type owl:ReflexiveProperty .

• fam:hasChild rdf:type owl:IrreflexiveProperty .

• many properties are neither!

Asymmetric, reflexive, irreflexive properties

• New in OWL2:

– both symmetric and asymmetric properties:

• fam:marriedTo a owl:SymmetricProperty .

– “fam:marriedTo is always mutual (two-way)”

• fam:hasChild a owl:AsymmetricProperty .

– “no resources can be fam:hasChild of each other”

• many properties are neither!

– both reflexive and irreflexive properties:

• owl:sameAs a owl:ReflexiveProperty .

– “every resource is owl:sameAs itself”

• fam:hasChild a owl:IrreflexiveProperty .

– “no resource can be fam:hasChild of itself”

• many properties are neither!

Transitive properties

• Some properties can form chains so that the result is the
property itself, e.g.:

– rex:HaakonMagnus fam:hasAncestor rex:Harald .

– rex:Harald fam:hasAncestor rex:Olav .

– rex:HaakonMagnus fam:hasAncestor rex:Olav .

• P a owl:TransitiveProperty:

– fam:hasAncestor a owl:TransitiveProperty .

– rdfs:subClassOf a owl:TransitiveProperty .

– rdfs:subPropertyOf a owl:TransitiveProperty .

• Entailment rules:

– “if S P X . X P O . P a owl:TransitiveProperty then

• S P O .”

Functional properties

• Each subject can only have one object value for the functional
property, e,g.,

– fam:mother a owl:FunctionalProperty .

– fam:birthdate a owl:FunctionalProperty .

– owl:FunctionalProperty rdfs:subClassOf “owl:Property” .

• “Entailment rule”:

– if S P O1 . S P O2 . P a owl:FunctionalProperty then

• O1 owl:sameAs O2 .

– ...for owl:ObjectProperties

• similar rule for owl:DatatypeProperties

Inverse functional properties

• Two different subjects cannot have the same object for an
inverse functional property, i.e.,
– fam:persNum a owl:InverseFunctionalObjectProperty .

– fam:persNum a owl:FunctionalProperty .

– owl:FunctionalProperty
owl:inverseOf owl:InverseFunctionalObjectProperty .

• Inverse functional properties are unique
for each individual
– used for identifiers in OWL 1

– OWL 2 has a built-in owl:hasKey property for identifiers:

• similar to inverse functional object properties

• can only be used with OWL 2's owl:NamedIndividuals

• ...not for anonymous owl:Individuals

Summary: more specific properties

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (later)

– chained properties, e.g.:
fam:hasGrandparent

owl:propertyChainAxiom (:hasParent :hasParent) .

Individual equivalence

• Two individuals (with different IRI-s) may represent the same
thing:

– http://dbpedia.org/resource/Amanda_Plummer

– http://yago-knowledge.org/resource/Amanda_Plummer

– http://data.linkedmdb.org/resource/actor/34880

• I1 owl:sameAs I2:

– owl:sameAs a owl:ReflexiveProperty .

– owl:sameAs a owl:SymmetricProperty .

– owl:sameAs a owl:TransitiveProperty .

• owl:sameAs is an equivalence relation:

• because it is reflexive, symmetric and transitive

Unique Name Assumption (UNA)

• If two resources have different names, do they necessarily
represent different things?

• RDF and OWL does not assume this!

– in RDF and OWL, we do not know whether resources with
different names represent different things or not

• We can use

– owl:sameAs – two resources represent the same thing!

– owl:differentFrom – they represent different things!

• Some ICT-languages and technologies use UNA, others do
not!

Individual difference

• A pair of individuals with different names (IRI-s)
may represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

Individual difference

• A pair of individuals with different names (IRI-s)
may represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• A group of individuals with different names (IRI-s)
may represent different things, e.g.,

– [a owl:AllDifferent] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

) .

Individual difference

• A pair of individuals with different names (IRI-s)
must represent different things, e.g.,

– cal:Spring owl:differentFrom cal:Summer .

• A group of individuals with different names (IRI-s)
must represent different things, e.g.,

– [a owl:AllDifferent] owl:distinctMembers (
cal:Spring cal:Summer cal:Autumn cal:Winter

) .

– owl:AllDifferent and owl:distinctMembers are special
constructs in OWL

• they must always be used together

– ...corresponds to pairwise owl:differentFrom between
all individuals in the owl:distinctMembers-list

Equivalent classes

• Two classes (with different IRI-s) represent the same class:

• C1 owl:equivalentClass C2:

– owl:equivalentClass a owl:ReflexiveProperty .

– owl:equivalentClass a owl:SymmetricProperty .

– owl:equivalentClass a owl:TransitiveProperty .

• owl:equivalentClass is another equivalence relation:

• it is reflexive, symmetric and transitive

• means the same as

– C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C1

Disjoint classes

• Some classes cannot have the same individual as a member,

– fam:Male owl:disjointWith fam:Female .

– owl:disjointWith a owl:SymmetricProperty .

• ...but it is not transitive

• I.e., no individual can have both classes as its rdf:type

– ...corresponds to owl:differentFrom between all pairs of
individuals in fam:Male and fam:Female

• Preferred in formal versions of OWL (no “punning”):

– owl:Class owl:disjointWith “owl:Property” .

– owl:Class owl:disjointWith “owl:Individual” .

– “owl:Property” owl:disjointWith owl:Individual .

Equivalent properties

• Two properties (with different IRI-s) represent the same
property:

• P1 owl:equivalentProperty P2:

– owl:equivalentProperty a owl:ReflexiveProperty .

– owl:equivalentProperty a owl:SymmetricProperty .

– owl:equivalentProperty a owl:TransitiveProperty .

• owl:equivalentProperty is another equivalence relation:

• it is reflexive, symmetric and transitive

• Also disjoint properties:

• :hasParent owl:propertyDisjointWith :hasSpouse .

Summary: sameness and difference

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

