Welcome to INFO216: Knowledge Graphs Spring 2022

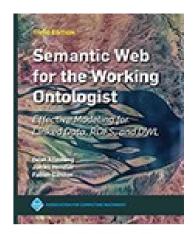
Andreas L Opdahl <Andreas.Opdahl@uib.no>

Session 10: Reasoning about KGs (DL)

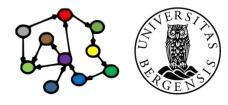
- Themes:
 - description logic
 - decision problems
 - OWL DL
 - Manchester OWL-syntax

Readings

- Material at http://wiki.uib.no/info216 (cursory):
 - http://www.w3.org/TR/owl2-primer/
 - show: Turtle and Manchester syntax
 - hide: other syntaxes
 - Description Logic Handbook:
 - Chapter 1: Nardi & Brachman: Introduction to Description Logics
 - Chapter 2: Baader & Nutt: Formal Description Logics (gets hard)



Description Logic (DL)



Relationship to other logics

Proposition logics are about statements (propositions):

```
"Martha is a Woman" 
"Martha is Human" 
\[ \lambda \]
"Martha is Female"
```

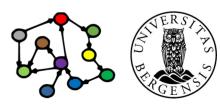
- (First order) *predicate logics* are about *predicates* and *objects*:
 - $\forall x. (Woman(x) \Leftrightarrow Human(x) \land Female(x))$
- Description logics are about concepts:
 - Woman ≐ Human □ Female
 - and also about roles and individuals
- There are many other logic systems:
 - modal logics: necessarily □, possibly ◊
 - temporal logics: always □, sometimes ◊, next time ○

Description logics

- Description Logic (DL)
 - a simple *fragment* of predicate logic
 - ...or, rather, a family of such fragments
 - not very expressive ("uttrykkskraftig")
 - but (can have) good decision problems, i.e.,
 - it answers many decision problems (rather) quickly
- Suitable for describing concepts ("begreper")
 - formal basis for OWL DL
 - can be used to:
 - describe concepts and their roles ("Tbox")
 - describe roles and their relations ("Rbox")
 - describe individuals and their roles ("ABox")

Definition of concepts ("begreper")

- Woman [±] Human [□] Female
- Man ≐ Human □ ¬ Woman
- Parent = Mother | Father
 - concepts: Human, Female, Woman...
 - definition: ≐
 - conjunction (and): □
 - disjunction (or): □
 - negation (not): -
 - nested expressions: ()
- Childless = ..using Human and Parent..



Definition of concepts ("begreper")

- Woman = Human □ Female
- Man ≐ Human □ ¬ Woman
- Parent [±] Mother □ Father
 - concepts: Human, Female, Woman...
 - definition: ≐
 - conjunction (and): □
 - disjunction (or): □
 - negation (not): -
 - nested expressions: ()
- Childless ≐ Human □ ¬ Parent

Types of concepts ("begreper")

- Woman [±] Human [□] Female
- Man ≐ Human □ ¬ Woman
- Parent = Mother | Father
 - atomic (or basic, primitive) concepts:
 Human, Female, Woman...
 - only used on the r.h.s. of definitions
 - concept expressions (complex concepts):
 ¬ Woman, Human □ Female...
 - only used on the r.h.s. of definitions
 - defined (and named) concepts:
 Woman, Man...
 - defined on the l.h.s. of definitions

Atomic and defined concepts

- Atomic (or basic) concepts
 - given, always named
 - cannot appear on the l.h.s. of a = definition
 - correspond to simple OWL-NamedClasses
- Concept expressions
 - defined in terms of other concepts (and roles)
 - correspond to complex OWL-Classes
- Defined concepts can also be named
 - must appear on the l.h.s. of a = definition
 - concept_name = concept_expression
- ...similar distinction between atomic and defined roles

An atomic (or basic) role

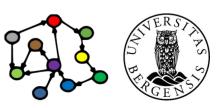
- Mother = Female □ ∃hasChild. □
- Bachelor = Male □ ¬∃hasSpouse. ⊤
- Uncle = Male □ ∃hasSibling.Parent
 - roles: hasChild, hasSibling...
 - universal concept ("top"): T
 - existential restriction: 3
- Grandparent = ..using Human, hasChild, Parent..
- Grandparent = ..using only Human, hasChild..
- Uncle = ..using Male, hasSibling, hasChild..



- Mother = Female □ ∃hasChild. □
- Bachelor = Male □ ¬∃hasSpouse. ⊤
- Uncle = Male □ ∃hasSibling.Parent
 - roles: hasChild, hasSibling...
 - universal concept ("top"): T
 - existential restriction: 3
- Grandparent = Human □ ∃hasChild.Parent
- Grandparent = ..using only Human, hasChild..
- Uncle = ..using Male, hasSibling, hasChild..

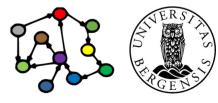
- Mother = Female □ ∃hasChild. □
- Bachelor = Male □ ¬∃hasSpouse. ⊤
- Uncle = Male □ ∃hasSibling.Parent
 - roles: hasChild, hasSibling...
 - universal concept ("top"): T
 - existential restriction: 3
- Grandparent = Human □ ∃hasChild.Parent
- Grandparent = Human □ ∃ hasChild.∃ hasChild.⊤
- Uncle =using Male, hasSibling, hasChild....

- Mother = Female □ ∃hasChild. □
- Bachelor = Male □ ¬∃hasSpouse. □
- Uncle = Male □ ∃hasSibling.Parent
 - roles: hasChild, hasSibling...
 - universal concept ("top"): T
 - existential restriction: 3
- Grandparent = Human □ ∃hasChild.Parent
- Grandparent = Human □ ∃ hasChild.∃ hasChild.⊤
- Uncle = Male □ ∃ hasSibling.∃ hasChild.□



Null concept

- Male □ Female □ ⊥
 null concept ("bottom"): ⊥
 subsumption (sub concept): □
- \sqsubseteq is used for *subsumption axioms*
 - or: containment / specialisation axioms
- is used for definitions (or just ≡)
 - = is also used for equivalence axioms
- Note the use of . . . ⊑ ⊥ ("subsumption of bottom") to say that something is not the case

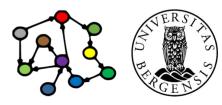


Null concept

- Male \sqcap Female \sqsubseteq \bot
 - null concept ("bottom"): ⊥
 - subsumption (sub concept): □
- ☐ is used for *subsumption axioms*
 - or: containment / specialisation axioms
- is used for *definitions* (or just ≡)
 - \equiv is also used for equivalence axioms
- This was our first proper axiom!
 - so far we have just defined concepts
 - we have not used them in proper axioms

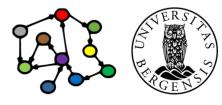
Axioms

- is used for definitions
- = is used for equivalence axioms
 - and sometimes for definitions too...
- Axioms are equivalences or subsumptions:
 - subsumption axioms (□):
 - composite concept (role) expressions on both sides
 - equivalence axioms (≡):
 - composite concept (role) expressions on both sides
 - corresponds to:C □ D, D □ C
- expression ⊑ ⊥ ("subsumption of bottom") is used to say that something is *not* the case



More role definitions

- HappyFather = Father □ ∀ hasChild.HappyPerson
 - universal restriction: \forall
- MotherOfOne = Mother □ =1 hasChild. □
- Polygamist = ≥3 hasSpouse. T
 - number restrictions: =, \geq , \leq
- Narsissist = ∃hasLoveFor.Self
 - self references: Self
- MassMurderer = ...using hasKilled, Human...



More uses of roles

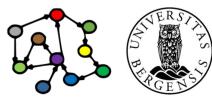
- HappyFather = Father □ ∀ hasChild.HappyPerson
 - universal restriction: \forall
- MotherOfOne = Mother □ =1 hasChild. □
- Polygamist = ≥3 hasSpouse. T
 - number restrictions: =, \geq , \leq
- Narsissist = ∃hasLoveFor.Self
 - self references: Self
- MassMurderer = ≥4 hasKilled.Human

Inverse and transitive roles

- Child = Human □ ∃hasChild . T
- hasParent = hasChild
- hasSibling = hasSibling
- - inverse role: hasChild
 - symmetric role: hasSibling
 - transitive role: hasParent*
- Niece = .. Woman, hasChild, hasSibling..

Inverse and transitive roles

- Child = Human □ ∃hasChild . T
- hasParent = hasChild
- hasSibling = hasSibling
- - inverse role: hasChild
 - symmetric role: hasSibling
 - transitive role: hasParent*
- Niece = Woman □ ∃hasChild hasSibling. □
- We just started to define roles!
 - until now, we have only defined concepts



Composite roles

- Similar to composite concepts, e.g.:
 - hasUncle = hasParent o hasBrother
 - hasLovedChild = hasChild □ hasLoveFor
 - hasBrother = (hasSibling | Male)
- Not always supported by reasoning engines
 - they can have "bad decision problems"
 - i.e., they compute slowly or intractably
 - ...with some exceptions
- hasDaughter = ..using hasChild, Female..

Composite roles

- Similar to composite concepts, e.g.:
 - hasUncle = hasParent o hasBrother
 - hasLovedChild = hasChild □ hasLoveFor
 - hasBrother = (hasSibling | Male)
- Not always supported by reasoning engines
 - they can have "bad decision problems"
 - i.e., they compute slowly or intractably
 - ...with some exceptions
- hasDaughter = (hasChild | Female)

TBox

- Terminology box (TBox):
 - a collection of definitions
 - definition axioms (≐):
 - concept_name = concept_expression
 - defined and named concept on the l.h.s.
 - complex concept expression on the r.h.s
 - defined names
 - must appear on the l.h.s. of some = definition
 - atomic (basic, primitive) names
 - can only appear on the r.h.s. of = definitions

Acyclic, definitional TBox

- ullet Source $\dot{=}$ $oxed{\exists}$ hasSource $^{ ou}$.Content
- TrustedContent ≐ ∃ hasSource.TrustedSource
- DebunkedContent = ∃ debunkedBy.FactChecker
- UnreliableSource ≐ ∃ hasSource DebunkedContent
- VerifyingSource = ∃ hasSource -. VerifiedContent
 - ¬ ∀ hasSource⁻.VerifiedContent

Acyclic, definitional TBox

- Source =
- TrustedContent =
- VerifiedContent =
- DebunkedContent =
- UnreliableSource =
- VerifyingSource =

Defined concepts

hasSource . Content Concept expressions of atomic concepts

∃ hasSource.TrustedSource

∃ verifiedBy.FactChecker

debunkedBy.FactChecker

∃ hasSource . DebunkedContent

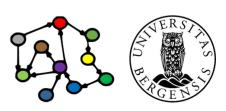
hasSource . VerifiedContent

hasSource . VerifiedContent

Acyclic and unequivocal!

TBox

- Acyclicity: no cyclic definitions in the TBox
- Unequivocality: each named defined term is only used on the l.h.s. of a single definition
- Concept expansion:
 - every concept can be written as an expression of only atomic concepts
 - algorithm:
 - start with the expression that defines the concept
 - recursively replace all the defined concepts used in the expression with their definitions
 - halt when only atomic concepts remain



Expanded definitional TBox

- Source [±] ∃ hasSource⁻.Content
- TrustedContent ≐ ∃ hasSource.TrustedSource
- VerifiedContent = ∃ verifiedBy.FactChecker
- DebunkedContent = ∃ debunkedBy.FactChecker
- UnreliableSource [±] ∃ hasSource ⁻.
- NamifuingCourse = I hasCourse
- VerifyingSource \doteq \exists hasSource $\bar{}$.
 - ∃ verifiedBy.FactChecker

∃ debunkedBy.FactChecker

- $\sqcap \ \forall \ hasSource^-$.
 - ∃ verifiedBy.FactChecker

Only basic concepts on the right hand sides!

RBox

- Role box (RBox):
 - a collection of definitions of roles
 - otherwise similar to TBoxes:
 - atomic (basic, primitive) roles
 - role expressions
 - named defined roles
 - role expansion
 - not always necessary (i.e., only atomic roles)

ABox

- So far definitions of concepts and roles (TBox, RBox)
- Also two types of axioms about individuals (ABox):
 - class assertion (using a concept):

Märtha : Female □ Royal

- role assertion (using a role):
 - <Märtha, EmmaTallulah> : hasChild
 - <Märtha, HaakonMagnus> : hasBrother
- A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K):
 - concepts, roles in the TBox (aka "the tags")
 - roles in the RBox (also "tags")
 - individuals, roles in the ABox ("the tagged data")

Syntaxes differ a bit...

- So far definitions of concepts and roles (TBox, RBox)
- Also two types of axioms about individuals (ABox):
 - class assertion (using a concept):
 Female (Märtha) , (Female □ Royal) (Märtha)
 - role assertion (using a role):
 hasChild(Märtha, EmmaTallulah)
 hasBrother(Märtha, HaakonMagnus)
- A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K):
 - concepts, roles in the TBox (aka "the tags")
 - roles in the RBox (also "tags")
 - individuals, roles in the ABox ("the tagged data")

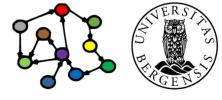
Summary of axioms

- Terminology axioms (TBox):
 - subsumptions: C □ D
 - equivalences: C ≡ D
 - corresponds to: $C \subseteq D$, $D \subseteq C$
- Role axioms (RBox)
- Individual assertion axioms (in the ABox):
 - class assertions: a:C
 - role assertions: <a,b>:R
- Knowledge base K = (T,A) or K = (T,RA)
 - TBox: \mathcal{T} RBox: \mathcal{R} ABox: \mathcal{A}

a and b are *individuals*. R is a *role*!

C and D are expressions!

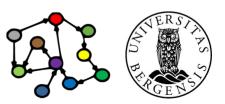
Decision Problems



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Reasoning over knowledge bases

- What more can we do with ontologies?
- For example:
 - given a source ontology that describes media content along with its sources and trusrtworthiness
 - we can answer questions like, e.g.:
 - is trusted content a type of content?
 - can content be both verified and debunked?
 - is all verified content trusted?
 - competency questions are what we want an ontology to answer
 - DL offers a clear and compact way or representing and reasoning about questions such as these!



Decision problems

- A computational problem with a yes/no answer, e.g.
 - is C subsumed by D: $\mathcal{K} \vdash C \sqsubseteq D$?
 - are C and D consistent: $\mathcal{K} \models a : (C \sqcap D)$?
 - does a belong to C: $\mathcal{K} \models \mathbf{a}:\mathbf{C}$?
 - is a R-related to b: $\mathcal{K} \models \langle a,b \rangle$: R?
- Given a knowledge base
 K, reasoning engines are designed to give yes / no answer
 - ...but not all decision problems are decidable
 - ...or have tractable complexity
 - depends on the expressions used!

C and D are classes, a and b are individuals. R is a role!

Decision problems for concepts

- Four important decision problems for concepts:
 - consistency:can an individual a exist so that

$$\mathcal{T} \models a:C$$

– subsumption:

$$\mathcal{T} \models \mathbf{C} \sqsubseteq \mathbf{D}$$

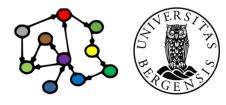
– equivalence:

$$\mathcal{T} \vdash \mathbf{C} \equiv \mathbf{D}$$
, also written $\mathbf{C} \equiv_{\mathcal{T}} \mathbf{D}$,

– disjunction:

$$\mathcal{T} \models \mathbf{C} \sqcap \mathbf{D} \sqsubseteq \mathbf{\bot}$$

T can always be emptied, by expanding all its concepts



Decision problems for concepts

- All four can be reduced to subsumption or consistency!
 - consistency:

$$\mathcal{T} \models a:C \quad \leftrightarrow \mathcal{T} \not\models C \sqsubseteq \bot$$
 $\mathcal{T} \sqsubseteq a:C \quad \leftrightarrow \mathcal{T} \models C \sqsubseteq \bot$

– subsumption:

$$\mathcal{T} \models \mathbf{C} \sqsubseteq \mathbf{D} \leftrightarrow \mathcal{T} \models \mathbf{C} \sqcap \neg \mathbf{D} \sqsubseteq \bot$$

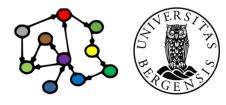
- equivalence:

$$\mathcal{T} \models C \equiv D \leftrightarrow \mathcal{T} \models C \sqsubseteq D, D \sqsubseteq C$$

– disjunction:

$$\mathcal{T} \vdash \mathbf{C} \sqcap \mathbf{D} \sqsubseteq \mathbf{\bot}$$

T can always be emptied, by expanding all its concepts



Decision problems for individuals

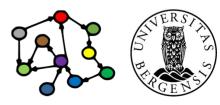
- Decision problems for individuals and roles:
 - instance checking:
 - is individual a member of class/concept C?

```
-A \models a:C \qquad \not\vdash A \sqcap \neg (a:C)
```

- role checking:
 - is individual a R-related to individual b?

$$-A \models \langle a,b \rangle : R \qquad \not\models A \sqcap \neg (\langle a,b \rangle : R)$$

- classifications (not yes/no):
 - to which classes/concepts does a belong?
 - all individuals of class/concept C?
- Everything boils down to consistency checking for ABoxes
 - ...under certain (rather weak) conditions



Decision problems in practice

- Description logic is implemented by reasoning engines/OWL reasoner
 - e.g., HermiT and Pellet
 - distinct from inference engines, such as OWL-RL
- Protegé-OWL
 - comes with HermiT, more plugins can be installed
- Owlready2 (an OWL programming API built around)
 - comes with HermiT and Pellet, HermiT is default
- Solves decision problems, e.g.,
 - classifiy individuals
 - find subclass relationships (subsumptions)
 - find unsatisfiable classes (concepts)
 - detect inconsistencies

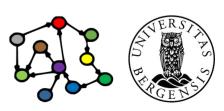


Tableau algorithm

- A simple reasoning procedure
- Tests satisfiability of a concept C₀
 - C₀ is possible expanded
 - negation normal form (NNF)
- Starts with ABox $A_0 = \{ C_0(x) \}$
- Applies transformation rules that preserve consistency
- Halt when not more rules can be applied
 - ...and halt a branch that contains a contradiction
- If all possible branches contain contradictions:
 - C₀ is unsatisfiable
- C₀ is satisfiable otherwise

Condition: A contains $(C_1 \sqcup C_2)(x)$, but neither $C_1(x)$ nor $C_2(x)$. **Action:** $A' = A \cup \{C_1(x)\}, A'' = A \cup \{C_2(x)\}.$ The $\rightarrow \exists$ -rule **Condition:** A contains $(\exists R.C)(x)$, but there is no individual name z such that C(z)and R(x,z) are in \mathcal{A} . **Action:** $A' = A \cup \{C(y), R(x, y)\}$ where y is an individual name not occurring in A. The \rightarrow_{\forall} -rule **Condition:** A contains $(\forall R.C)(x)$ and R(x,y), but it does not contain C(y). **Action:** $A' = A \cup \{C(y)\}.$ The \rightarrow >-rule **Condition:** A contains $(\ge n R)(x)$, and there are no individual names z_1, \ldots, z_n such that $R(x, z_i)$ $(1 \le i \le n)$ and $z_i \ne z_i$ $(1 \le i < j \le n)$ are contained in \mathcal{A} . **Action:** $A' = A \cup \{R(x, y_i) \mid 1 \le i \le n\} \cup \{y_i \ne y_j \mid 1 \le i < j \le n\}, \text{ where } y_1, \dots, y_n$ are distinct individual names not occurring in A. The \rightarrow <-rule **Condition:** A contains distinct individual names y_1, \ldots, y_{n+1} such that $(\leq n R)(x)$

and $R(x, y_1), \ldots, R(x, y_{n+1})$ are in \mathcal{A} , and $y_i \neq y_j$ is not in \mathcal{A} for some $i \neq j$.

 $\mathcal{A}_{i,j} = [y_i/y_j]\mathcal{A}$ is obtained from \mathcal{A} by replacing each occurrence of y_i by y_j .

Action: For each pair y_i, y_j such that i > j and $y_i \neq y_j$ is not in \mathcal{A} , the ABox

Condition: A contains $(C_1 \sqcap C_2)(x)$, but it does not contain both $C_1(x)$ and $C_2(x)$.

The \rightarrow_{\sqcap} -rule

The \rightarrow rule

Action: $A' = A \cup \{C_1(x), C_2(x)\}.$

Next week: Formal ontologies (OWL-DL)