
2

Basic Description Logics
Franz Baader

Werner Nutt

Abstract

This chapter provides an introduction to Description Logics as a formal language
for representing knowledge and reasoning about it. It first gives a short overview of
the ideas underlying Description Logics. Then it introduces syntax and semantics,
covering the basic constructors that are used in systems or have been introduced in
the literature, and the way these constructors can be used to build knowledge bases.
Finally, it defines the typical inference problems, shows how they are interrelated,
and describes different approaches for effectively solving these problems. Some of
the topics that are only briefly mentioned in this chapter will be treated in more
detail in subsequent chapters.

2.1 Introduction

As sketched in the previous chapter, Description Logics (DLs) is the most recent
name1 for a family of knowledge representation (KR) formalisms that represent the
knowledge of an application domain (the “world”) by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world descrip-
tion). As the name Description Logics indicates, one of the characteristics of these
languages is that, unlike some of their predecessors, they are equipped with a formal,
logic-based semantics. Another distinguished feature is the emphasis on reasoning
as a central service: reasoning allows one to infer implicitly represented knowledge
from the knowledge that is explicitly contained in the knowledge base. Descrip-
tion Logics support inference patterns that occur in many applications of intelligent
information processing systems, and which are also used by humans to structure
and understand the world: classification of concepts and individuals. Classification
1 Previously used names are terminological knowledge representation languages, concept languages, term

subsumption languages, and Kl-One-based knowledge representation languages.

47

48 F. Baader, W. Nutt

of concepts determines subconcept/superconcept relationships (called subsumption
relationships in DL) between the concepts of a given terminology, and thus allows
one to structure the terminology in the form of a subsumption hierarchy. This hi-
erarchy provides useful information on the connection between different concepts,
and it can be used to speed-up other inference services. Classification of individuals
(or objects) determines whether a given individual is always an instance of a certain
concept (i.e., whether this instance relationship is implied by the description of the
individual and the definition of the concept). It thus provides useful information
on the properties of an individual. Moreover, instance relationships may trigger the
application of rules that insert additional facts into the knowledge base.

Because Description Logics are a KR formalism, and since in KR one usually
assumes that a KR system should always answer the queries of a user in reason-
able time, the reasoning procedures DL researchers are interested in are decision
procedures, i.e., unlike, e.g., first-order theorem provers, these procedures should
always terminate, both for positive and for negative answers. Since the guarantee
of an answer in finite time need not imply that the answer is given in reasonable
time, investigating the computational complexity of a given DL with decidable in-
ference problems is an important issue. Decidability and complexity of the inference
problems depend on the expressive power of the DL at hand. On the one hand,
very expressive DLs are likely to have inference problems of high complexity, or
they may even be undecidable. On the other hand, very weak DLs (with efficient
reasoning procedures) may not be sufficiently expressive to represent the important
concepts of a given application. As mentioned in the previous chapter, investigating
this trade-off between the expressivity of DLs and the complexity of their reasoning
problems has been one of the most important issues in DL research.

Description Logics are descended from so-called “structured inheritance net-
works” [Brachman, 1977b; 1978], which were introduced to overcome the ambi-
guities of early semantic networks and frames, and which were first realized in the
system Kl-One [Brachman and Schmolze, 1985]. The following three ideas, first
put forward in Brachman’s work on structured inheritance networks, have largely
shaped the subsequent development of DLs:

• The basic syntactic building blocks are atomic concepts (unary predicates),
atomic roles (binary predicates), and individuals (constants).

• The expressive power of the language is restricted in that it uses a rather small set
of (epistemologically adequate) constructors for building complex concepts and
roles.

• Implicit knowledge about concepts and individuals can be inferred automatically
with the help of inference procedures. In particular, subsumption relationships
between concepts and instance relationships between individuals and concepts

Basic Description Logics 49

play an important rôle: unlike IS-A links in Semantic Networks, which are ex-
plicitly introduced by the user, subsumption relationships and instance relation-
ships are inferred from the definition of the concepts and the properties of the
individuals.

After the first logic-based semantics for Kl-One-like KR languages were proposed,
the inference problems like subsumption could also be provided with a precise mean-
ing, which led to the first formal investigations of the computational properties
of such languages. It has turned out that the languages used in early DL sys-
tems were too expressive, which led to undecidability of the subsumption problem
[Schmidt-Schauß, 1989; Patel-Schneider, 1989b]. The first worst-case complexity
results [Levesque and Brachman, 1987; Nebel, 1988] showed that the subsumption
problem is intractable (i.e., not polynomially solvable) even for very inexpressive
languages. As mentioned in the previous chapter, this work was the starting point of
a thorough investigation of the worst-case complexity of reasoning in Kl-One-like
KR languages (see Chapter 3 for details).

Later on it has turned out, however, that intractability of reasoning (in the sense
of being non-polynomial in the worst case) does not prevent a DL from being use-
ful in practice, provided that sophisticated optimization techniques are used when
implementing a system based on such a DL (see Chapter 9). When implementing
a DL system, the efficient implementation of the basic reasoning algorithms is not
the only issue, though. On the one hand, the derived system services (such as clas-
sification, i.e., constructing the subsumption hierarchy between all concepts defined
in a terminology) must be optimized as well [Baader et al., 1994]. On the other
hand, one needs a good user and application programming interface (see Chapter 7
for more details). Most implemented DL systems provide for a rule language, which
can be seen as a very simple, but effective, application programming mechanism
(see Subsection 2.2.5 for details).

Section 2.2 introduces the basic formalism of Description Logics. By way of
a prototypical example, it first introduces the formalism for describing concepts
(i.e., the description language), and then defines the terminological (TBox) and the
assertional (ABox) formalisms. Next, it introduces the basic reasoning problems
and shows how they are related to each other. Finally, it defines the rule language
that is available in many of the implemented DL systems.

Section 2.3 describes algorithms for solving the basic reasoning problems in
DLs. After shortly sketching structural subsumption algorithms, it concentrates
on tableau-based algorithms. Finally, it comments on the problem of reasoning
w.r.t. terminologies.

Finally, Section 2.4 describes some additional language constructors that are
not included in the prototypical family of description languages introduced in Sec-

50 F. Baader, W. Nutt

TBox

ABox

KB

Description Reasoning

Application
Programs Rules

Language

Fig. 2.1. Architecture of a knowledge representation system
based on Description Logics.

tion 2.2, but have been considered in the literature and are available in some DL
systems.

2.2 Definition of the basic formalism

A KR system based on Description Logics provides facilities to set up knowledge
bases, to reason about their content, and to manipulate them. Figure 2.1 sketches
the architecture of such a system (see Chapter 8 for more information on DL sys-
tems).

A knowledge base (KB) comprises two components, the TBox and the ABox.
The TBox introduces the terminology, i.e., the vocabulary of an application do-
main, while the ABox contains assertions about named individuals in terms of this
vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles,
which denote binary relationships between individuals. In addition to atomic con-
cepts and roles (concept and role names), all DL systems allow their users to build
complex descriptions of concepts and roles. The TBox can be used to assign names
to complex descriptions. The language for building descriptions is a characteris-
tic of each DL system, and different systems are distinguished by their description
languages. The description language has a model-theoretic semantics. Thus, state-
ments in the TBox and in the ABox can be identified with formulae in first-order
logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also offers services
that reason about them. Typical reasoning tasks for a terminology are to deter-
mine whether a description is satisfiable (i.e., non-contradictory), or whether one

Basic Description Logics 51

description is more general than another one, that is, whether the first subsumes
the second. Important problems for an ABox are to find out whether its set of
assertions is consistent, that is, whether it has a model, and whether the assertions
in the ABox entail that a particular individual is an instance of a given concept
description. Satisfiability checks of descriptions and consistency checks of sets of
assertions are useful to determine whether a knowledge base is meaningful at all.
With subsumption tests, one can organize the concepts of a terminology into a hier-
archy according to their generality. A concept description can also be conceived as
a query, describing a set of objects one is interested in. Thus, with instance tests,
one can retrieve the individuals that satisfy the query.

In any application, a KR system is embedded into a larger environment. Other
components interact with the KR component by querying the knowledge base and
by modifying it, that is, by adding and retracting concepts, roles, and assertions.
A restricted mechanism to add assertions are rules. Rules are an extension of
the logical core formalism, which can still be interpreted logically. However, many
systems, in addition to providing an application programming interface that consists
of functions with a well-defined logical semantics, provide an escape hatch by which
application programs can operate on the KB in arbitrary ways.

2.2.1 Description languages

Elementary descriptions are atomic concepts and atomic roles. Complex descrip-
tions can be built from them inductively with concept constructors. In abstract
notation, we use the letters A and B for atomic concepts, the letter R for atomic
roles, and the letters C and D for concept descriptions. Description languages are
distinguished by the constructors they provide. In the sequel we shall discuss var-
ious languages from the family of AL-languages. The language AL (= attributive
language) has been introduced in [Schmidt-Schauß and Smolka, 1991] as a mini-
mal language that is of practical interest. The other languages of this family are
extensions of AL.

2.2.1.1 The basic description language AL
Concept descriptions in AL are formed according to the following syntax rule:

C,D −→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C uD | (intersection)

52 F. Baader, W. Nutt

∀R.C | (value restriction)
∃R.> (limited existential quantification).

Note that, in AL, negation can only be applied to atomic concepts, and only the
top concept is allowed in the scope of an existential quantification over a role. For
historical reasons, the sublanguage of AL obtained by disallowing atomic negation is
called FL− and the sublanguage of FL− obtained by disallowing limited existential
quantification is called FL0.

To give examples of what can be expressed in AL, we suppose that Person and
Female are atomic concepts. Then Person u Female and Person u ¬Female are AL-
concepts describing, intuitively, those persons that are female, and those that are
not female. If, in addition, we suppose that hasChild is an atomic role, we can
form the concepts Person u ∃hasChild.> and Person u ∀hasChild.Female, denoting
those persons that have a child, and those persons all of whose children are female.
Using the bottom concept, we can also describe those persons without a child by
the concept Person u ∀hasChild.⊥.

In order to define a formal semantics of AL-concepts, we consider interpreta-
tions I that consist of a non-empty set ∆I (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept A a set AI ⊆ ∆I

and to every atomic role R a binary relation RI ⊆ ∆I × ∆I . The interpretation
function is extended to concept descriptions by the following inductive definitions:

>I = ∆I

⊥I = ∅
(¬A)I = ∆I \AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI}
(∃R.>)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI}.

We say that two concepts C, D are equivalent, and write C ≡ D, if CI =
DI for all interpretations I. For instance, going back to the definition of the
semantics of concepts, one easily verifies that ∀hasChild.Female u ∀hasChild.Student
and ∀hasChild.(Female u Student) are equivalent.

2.2.1.2 The family of AL-languages

We obtain more expressive languages if we add further constructors to AL. The
union of concepts (indicated by the letter U) is written as C tD, and interpreted
as

(C tD)I = CI ∪DI .

Basic Description Logics 53

Full existential quantification (indicated by the letter E) is written as ∃R.C, and
interpreted as

(∃R.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI ∧ b ∈ CI}.

Note that ∃R.C differs from ∃R.> in that arbitrary concepts are allowed to occur
in the scope of the existential quantifier.

Number restrictions (indicated by the letter N) are written as >nR(at-least
restriction) and as 6nR (at-most restriction), where n ranges over the nonnegative
integers. They are interpreted as

(>nR)I =
{

a ∈ ∆I
∣

∣

∣ |{b | (a, b) ∈ RI}| ≥ n
}

,

and

(6 nR)I =
{

a ∈ ∆I
∣

∣

∣ |{b | (a, b) ∈ RI}| ≤ n
}

,

respectively, where “| · |” denotes the cardinality of a set. From a semantic view-
point, the coding of numbers in number restrictions is immaterial. However, for the
complexity analysis of inferences it can matter whether a number n is represented
in binary (or decimal) notation or by a string of length n, since binary (decimal)
notation allows for a more compact representation.

The negation of arbitrary concepts (indicated by the letter C, for “complement”)
is written as ¬C, and interpreted as

(¬C)I = ∆I \ CI .

With the additional constructors, we can, for example, describe those persons
that have either not more than one child or at least three children, one of which is
female:

Person u (6 1 hasChild t (> 3 hasChild u ∃hasChild.Female)).

Extending AL by any subset of the above constructors yields a particular AL-
language. We name each AL-language by a string of the form

AL[U][E][N][C],

where a letter in the name stands for the presence of the corresponding constructor.
For instance, ALEN is the extension of AL by full existential quantification and
number restrictions (see the appendix on DL terminology for how to extend this
naming scheme to more expressive DLs).

From the semantic point of view, not all these languages are distinct, however.
The semantics enforces the equivalences CtD ≡ ¬(¬Cu¬D) and ∃R.C ≡ ¬∀R.¬C.
Hence, union and full existential quantification can be expressed using negation.
Conversely, the combination of union and full existential quantification gives us

54 F. Baader, W. Nutt

the possibility to express negation of concepts (through their equivalent negation
normal form, see Section 2.3.2). Therefore, we assume w.l.o.g. that union and full
existential quantification are available in every language that contains negation,
and vice versa. It follows that (modulo the equivalences mentioned above), all
AL-languages can be written using the letters U , E , N only. It is not hard to see
that the eight languages obtained this way are indeed pairwise non-equivalent. In
the sequel, we shall not distinguish between an AL-language with negation and its
counterpart that has union and full existential quantification instead. In the same
vein, we shall use the letter C instead of the letters UE in language names. For
instance, we shall write ALC instead of ALUE and ALCN instead of ALUEN .

2.2.1.3 Description languages as fragments of predicate logic

The semantics of concepts identifies description languages as fragments of first-order
predicate logic. Since an interpretation I respectively assigns to every atomic con-
cept and role a unary and binary relation over ∆I , we can view atomic concepts
and roles as unary and binary predicates. Then, any concept C can be translated
effectively into a predicate logic formula φC(x) with one free variable x such that
for every interpretation I the set of elements of ∆I satisfying φC(x) is exactly CI :
An atomic concept A is translated into the formula A(x); the constructors intersec-
tion, union, and negation are translated into logical conjunction, disjunction, and
negation, respectively; if C is already translated into φC(x) and R is an atomic role,
then value restriction and existential quantification are captured by the formulae

φ∃R.C(y) = ∃x. R(y, x) ∧ φC(x)

φ∀R.C(y) = ∀x.R(y, x) → φC(x),

where y is a new variable; number restrictions are expressed by the formulae

φ>n R(x) = ∃y1, . . . , yn. R(x, y1) ∧ · · · ∧R(x, yn) ∧
∧

i<j

yi 6= yj

φ6n R(x) = ∀y1, . . . , yn+1. R(x, y1) ∧ · · · ∧R(x, yn+1) →
∨

i<j

yi = yj .

Note that the equality predicate “=” is needed to express number restrictions, while
concepts without number restrictions can be translated into equality-free formulae.

One may argue that, since concepts can be translated into predicate logic, there
is no need for a special syntax. However, the above translations show that, in
particular for number restrictions, the variable free syntax of description logics is
much more concise. As can be seen from Section 2.3, it also lends itself easily to
the development of algorithms.

Basic Description Logics 55

A more detailed analysis of the connection between fragments of first-order pred-
icate logic and DLs can be found in Chapter 4.

2.2.2 Terminologies

We have seen how we can form complex descriptions of concepts to describe classes
of objects. Now, we introduce terminological axioms, which make statements about
how concepts or roles are related to each other. Then we single out definitions
as specific axioms and identify terminologies as sets of definitions by which we
can introduce atomic concepts as abbreviations or names for complex concepts.
If the definitions in a terminology contain cycles, we may have to adopt fixpoint
semantics to make them unequivocal. We discuss for which types of terminologies
fixpoint models exist.

2.2.2.1 Terminological axioms

In the most general case, terminological axioms have the form

C v D (R v S) or C ≡ D (R ≡ S),

where C, D are concepts (and R, S are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities. To simplify the
exposition, we deal in the following only with axioms involving concepts.

The semantics of axioms is defined as one would expect. An interpretation I
satisfies an inclusion C v D if CI ⊆ DI , and it satisfies an equality C ≡ D if
CI = DI . If T is a set of axioms, then I satisfies T iff I satisfies each element
of T . If I satisfies an axiom (resp. a set of axioms), then we say that it is a model
of this axiom (resp. set of axioms). Two axioms or two sets of axioms are equivalent
if they have the same models.

2.2.2.2 Definitions

An equality whose left-hand side is an atomic concept is a definition. Definitions
are used to introduce symbolic names for complex descriptions. For instance, by
the axiom

Mother ≡ Woman u ∃hasChild.Person

we associate to the description on the right-hand side the name Mother. Symbolic
names may be used as abbreviations in other descriptions. If, for example, we have
defined Father analogously to Mother, we can define Parent as

Parent ≡ Mother t Father.

A set of definitions should be unequivocal. We call a finite set of definitions T a

56 F. Baader, W. Nutt

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild.Person
Father ≡ Man u ∃hasChild.Person
Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild.Parent
MotherWithManyChildren ≡ Mother u> 3 hasChild
MotherWithoutDaughter ≡ Mother u ∀hasChild.¬Woman

Wife ≡ Woman u ∃hasHusband.Man

Fig. 2.2. A terminology (TBox) with concepts about family
relationships.

terminology or TBox if no symbolic name is defined more than once, that is, if for
every atomic concept A there is at most one axiom in T whose left-hand side is A.
Figure 2.2 shows a terminology with concepts concerned with family relationships.

Suppose, T is a terminology. We divide the atomic concepts occurring in T into
two sets, the name symbols NT that occur on the left-hand side of some axiom
and the base symbols BT that occur only on the right-hand side of axioms. Name
symbols are often called defined concepts and base symbols primitive concepts1. We
expect that the terminology defines the name symbols in terms of the base symbols,
which now we make more precise.

A base interpretation for T is an interpretation that interprets only the base
symbols. Let J be such a base interpretation. An interpretation I that interprets
also the name symbols is an extension of J if it has the same domain as J , i.e.,
∆I = ∆J , and if it agrees with J for the base symbols. We say that T is definitorial
if every base interpretation has exactly one extension that is a model of T . In other
words, if we know what the base symbols stand for, and T is definitorial, then the
meaning of the name symbols is completely determined. Obviously, if a terminology
is definitorial, then every equivalent terminology is also definitorial.

The question whether a terminology is definitorial or not is related to the question
whether or not its definitions are cyclic. For instance, the terminology that consists
of the the single axiom

Human′ ≡ Animal u ∀hasParent.Human′ (2.1)

contains a cycle, which in this special case is very simple. In general, we define
cycles in a terminology T as follows. Let A, B be atomic concepts occurring in T .
We say that A directly uses B in T if B appears on the right-hand side of the
1 Note that some papers use the notion “primitive concept” with a different meaning; e.g., synonymous to

what we call atomic concepts, or to denote the (atomic) left-hand sides of concept inclusions.

Basic Description Logics 57

Woman ≡ Person u Female
Man ≡ Person u ¬(Person u Female)

Mother ≡ (Person u Female) u ∃hasChild.Person
Father ≡ (Person u ¬(Person u Female)) u ∃hasChild.Person
Parent ≡ ((Person u ¬(Person u Female)) u ∃hasChild.Person)

t ((Person u Female) u ∃hasChild.Person)

Grandmother ≡ ((Person u Female) u ∃hasChild.Person)
u ∃hasChild.(((Person u ¬(Person u Female))

u ∃hasChild.Person)
t ((Person u Female)

u ∃hasChild.Person))
MotherWithManyChildren ≡ ((Person u Female) u ∃hasChild.Person) u> 3 hasChild
MotherWithoutDaughter ≡ ((Person u Female) u ∃hasChild.Person)

u ∀hasChild.(¬(Person u Female))

Wife ≡ (Person u Female)
u ∃hasHusband.(Person u ¬(Person u Female))

Fig. 2.3. The expansion of the Family TBox in Figure 2.2.

definition of A, and we call uses the transitive closure of the relation directly uses.
Then T contains a cycle iff there exists an atomic concept in T that uses itself.
Otherwise, T is called acyclic.

Unique extensions need not exist if a terminology contains cycles. Consider, for
instance, the terminology that contains only Axiom (2.1). Here, Human′ is a name
symbol and Animal and hasParent are base symbols. For an interpretation where
hasParent relates every animal to its progenitors, many extensions are possible to
interpret Human′ in a such a way that the axiom is satisfied: Human′ can, among
others, be interpreted as the set of all animals, as some species, or any other set of
animals with the property that for each animal it contains also its progenitors.

In contrast, if a terminology T is acyclic, then it is definitorial. The reason is that
we can expand through an iterative process the definitions in T by replacing each
occurrence of a name on the right-hand side of a definition with the concepts that
it stands for. Since there is no cycle in the set of definitions, the process eventually
stops and we end up with a terminology T ′ consisting solely of definitions of the
form A ≡ C ′, where C ′ contains only base symbols and no name symbols. We call T ′
the expansion of T . Note that the size of the expansion can be exponential in the
size of the original terminology [Nebel, 1990b]. The Family TBox in Figure 2.2 is
acyclic. Therefore, we can compute the expansion, which is shown in Figure 2.3.

Proposition 2.1 Let T be a acyclic terminology and T ′ be its expansion. Then

(i) T and T ′ have the same name and base symbols;

58 F. Baader, W. Nutt

(ii) T and T ′ are equivalent;
(iii) both, T and T ′, are definitorial.

Proof Let T1 be a terminology. Suppose A ≡ C and B ≡ D are definitions in T1

such that B occurs in C. Let C ′ be the concept obtained from C by replacing each
occurrence of B in C with D, and let T2 be the terminology obtained from T1 by
replacing the definition A ≡ C with A ≡ C ′. Then both terminologies have the
same name and base symbols. Moreover, since T2 has been obtained from T1 by
replacing equals by equals, both terminologies have the same models. Since T ′ is
obtained from T by a sequence of replacement steps like the ones above, this proves
claims (i) and (ii).

Suppose now that J is an interpretation of the base symbols. We extend it to an
interpretation I that covers also the name symbols by setting AI = C ′J , if A ≡ C ′

is the definition of A in T ′. Clearly, I is a model of T ′, and it is the only extension
of J that is a model of T ′. This shows that T ′ is definitorial. Moreover, T is
definitorial as well, since it is equivalent to T ′.

It is characteristic for acyclic terminologies, in a sense to be made more precise,
to uniquely define the name symbols in terms of the base symbols.

Of course, there are also terminologies with cycles that are definitorial. Consider
for instance the one consisting of the axiom

A ≡ ∀R.B t ∃R.(A u ¬A), (2.2)

which has a cycle. However, since ∃R.(Au¬A) is equivalent to the bottom concept,
Axiom (2.2) is equivalent to the acyclic axiom

A ≡ ∀R.B. (2.3)

This example is typical for the general situation.

Theorem 2.2 Every definitorial ALC-terminology is equivalent to an acyclic ter-
minology.

The theorem is a reformulation of Beth’s Definability Theorem [Gabbay, 1972] for
the modal propositional logic Kn, which, as shown by Schild [1991], is a notational
variant of ALC.

2.2.2.3 Fixpoint semantics for terminological cycles

Under the semantics we have studied so far, which is essentially the semantics of
first-order logic, terminologies have definitorial impact only if they are essentially
acyclic. Following Nebel [1991], we shall call this semantics descriptive semantics to
distinguish it from the fixpoint semantics introduced below. Fixpoint semantics are

Basic Description Logics 59

motivated by the fact that there are situations where intuitively cyclic definitions are
meaningful and the intuition can be captured by least or greatest fixpoint semantics.

Example 2.3 Suppose that we want to specify the concept of a “man who has
only male offspring,” for short Momo. In particular, such a man is a Mos, that is,
a “man who has only sons.” A Mos can be defined without cycles as

Mos ≡ Man u ∀hasChild.Man.

For a Momo, however, we want to make a statement about the fillers of the transitive
closure of the role hasChild. Here a recursive definition of Momo seems to be natural.
A man having only male offspring is himself a man, and all his children are men
having only male offspring:

Momo ≡ Man u ∀hasChild.Momo. (2.4)

In order to achieve the desired meaning, we have to interpret this definition un-
der an appropriate fixpoint semantics. We shall show below that greatest fixpoint
semantics captures our intuition here.

Cycles also appear when we want to model recursive structures, e.g., binary trees.1

Example 2.4 We suppose that there is a set of objects that are Trees and a binary
relation has-branch between objects that leads from a tree to its subtrees. Then
the binary trees are the trees with at most two subtrees that are themselves binary
trees:

BinaryTree ≡ Tree u6 2 has-branch u ∀has-branch.BinaryTree.

As with the definition of Momo, a fixpoint semantics will yield the desired meaning.
However, for this example we have to use least fixpoint semantics.

We now give a formal definition of fixpoint semantics. In a terminology T , every
name symbol A occurs exactly once as the left-hand side of an axiom A ≡ C.
Therefore, we can view T as a mapping that associates to a name symbol A the
concept description T (A) = C. With this notation, an interpretation I is a model of
T if, and only if, AI = (T (A))I . This characterization has the flavour of a fixpoint
equation. We exploit this similarity to introduce a family of mappings such that an
interpretation is a model of T iff it is a fixpoint of such a mapping.

Let T be a terminology, and let J be a fixed base interpretation of T . By ExtJ
we denote the set of all extensions of J . Let TJ : ExtJ → ExtJ be the mapping
1 The following example is taken from [Nebel, 1991].

60 F. Baader, W. Nutt

that maps the extension I to the extension TJ (I) defined by ATJ (I) = (T (A))I for
each name symbol A.

Now, I is a fixpoint of TJ iff I = TJ (I), i.e., iff AI = ATJ (I) for all name
symbols. This means that, for every definition A ≡ C in T , we have AI = ATJ (I) =
(T (A))I = CI , which means that I is a model of T . This proves the following
result.

Proposition 2.5 Let T be a terminology, I be an interpretation, and J be the
restriction of I to the base symbols of T . Then I is a model of T if, and only if, I
is a fixpoint of TJ .

According to the preceding proposition, a terminology T is definitorial iff every
base interpretation J has a unique extension that is a fixpoint of TJ .

Example 2.6 To get a feel for why cyclic terminologies are not definitorial, we
discuss as an example the terminology T Momo that consists only of Axiom (2.4).
Consider the base interpretation J defined by

∆J = {Charles1, Charles2, . . .} ∪ {James1, . . . , JamesLast},
ManJ = ∆J ,

hasChildJ = {(Charlesi, Charles(i+1)) | i ≥ 1} ∪
{(Jamesi, James(i+1)) | 1 ≤ i < Last}.

This means that the Charles dynasty does not die out, whereas there is a last
member of the James dynasty.

We want to identify the fixpoints of T Momo
J . Note that an individual with-

out children, i.e., without fillers of hasChild, is always in the interpretation of
∀hasChild.Momo, no matter how Momo is interpreted. Therefore, if I is a fix-
point extension of J , then JamesLast is in (∀hasChild.Momo)I , and thus in MomoI .
We conclude that every James is a Momo. Let I1 be the extension of J such that
MomoI1 comprises exactly the James dynasty. Then it is easy to check that I1 is a
fixpoint. If, in addition to the James dynasty, also some Charles is a Momo, then
all the members of the Charles dynasty before and after him must belong to the
concept Momo. One can easily check that the extension I2 that interprets Momo
as the entire domain is also a fixpoint, and that there is no other fixpoint.

In order to give definitorial impact to a cyclic terminology T , we must single out
a particular fixpoint of the mapping TJ if there are more than one. To this end,
we define a partial ordering “�” on the extensions of J . We say that I � I ′ if
AI ⊆ AI

′
for every name symbol in T . In the above example, Momo is the only

name symbol. Since MomoI1 ⊆ MomoI2 , we have I1 � I2.

Basic Description Logics 61

A fixpoint I of TJ is the least fixpoint (lfp) if I � I ′ for every other fixpoint I ′.
We say that I is a least fixpoint model of T if I is the least fixpoint of TJ . for
some base interpretation J . Under least fixpoint semantics we only admit the least
fixpoint models of T as intended interpretations. Greatest fixpoints (gfp), greatest
fixpoint models, and greatest fixpoint semantics are defined analogously. In the
Momo example, I1 is the least and I2 the greatest fixpoint of TJ .

2.2.2.4 Existence of fixpoint models

Least and greatest fixpoint models need not exist for every terminology.

Example 2.7 As a simple example, consider the axiom

A ≡ ¬A. (2.5)

If I is a model of this axiom, then AI = ∆I \ AI , which implies ∆I = ∅, an
absurdity.

A terminology containing Axiom (2.5) thus does not have any models, and there-
fore also no gfp (lfp) models.

There are also cases where models (i.e., fixpoints) exist, but there is neither a
least one nor a greatest one. As an example, consider the terminology T with the
single axiom

A ≡ ∀R.¬A. (2.6)

Let J be the base interpretation with ∆J = {a, b} and RJ = {(a, b), (b, a)}. Then
there are two fixpoint extensions I1, I2, defined by AI1 = {a} and AI2 = {b}.
However, they are not comparable with respect to “�”.

In order to identify terminologies with the property that for every base interpre-
tation there exists a least and a greatest fixpoint extension, we draw upon results
from lattice theory. Recall that a lattice is complete if every family of elements has
a least upper bound.

On ExtJ we have introduced the partial ordering “�”. For a family of interpre-
tations (Ii)i∈I in ExtJ we define I0 =

⊔

i∈I Ii as the pointwise union of the Iis,
that is, for every name symbol A we have AI0 =

⋃

i∈I AIi . Then I0 is the least
upper bound of the Iis, which shows that (ExtJ ,�) is a complete lattice.

A function f : L → L on a lattice (L,�) is monotone if f(x) � f(y) whenever
x � y. Tarski’s Fixpoint Theorem [Tarski, 1955] says that for a monotone function
on a complete lattice the set of fixpoints is nonempty and forms itself a complete
lattice. In particular, there is a least and a greatest fixpoint.

We define that a terminology T is monotone if the mapping TJ is monotone for
all base interpretations J . By Tarski’s theorem, such terminologies have greatest

62 F. Baader, W. Nutt

and least fixpoints. However, to apply the theorem, we must be able to recognize
monotone terminologies. A simple syntactic criterion is the following. We call a
terminology negation free if no negation occurs in it. By an induction over the depth
of concept descriptions one can check that every negation free ALCN -terminology
is monotone.

Proposition 2.8 If T is a negation free terminology and J a base interpretation,
then there exist extensions of J that are a lfp-model and a gfp-model of T , respec-
tively.

Negation free terminologies are not the most general class of terminologies having
least and greatest fixpoints. We have seen in Proposition 2.1 that acyclic termi-
nologies are definitorial and thus for a given base interpretation admit only a single
extension that is a model, which then is both a least and a greatest fixpoint model.

We obtain a more refined criterion for the existence of least and greatest fixpoints
if we pay attention to the interplay between cycles and negation. To this end, we
associate to a terminology T a dependency graph GT , whose nodes are the name
symbols in T . If T contains the axiom A ≡ C, then for every occurrence of the
name symbol A′ in C, there is an arc from A to A′ in GT . Arcs are labeled as
positive and negative. The arc from A to A′ is positive if A′ occurs in C in the
scope of an even number of negations, and it is negative if A′ occurs in the scope
of an odd number of negations. A sequence of nodes A1, . . . , An is a path if there is
an arc in GT from Ai to Ai+1 for all i = 1, . . . , n− 1. A path is a cycle if A1 = An.

Proposition 2.9 Let T be a terminology such that each cycle in GT contains an
even number of negative arcs. Then T is monotone.

We call a terminology satisfying the precondition of this proposition syntactically
monotone.

2.2.2.5 Terminologies with inclusion axioms

For certain concepts we may be unable to define them completely. In this case, we
can still state necessary conditions for concept membership using an inclusion. We
call an inclusion whose left-hand side is atomic a specialization.

For example, if a (male) knowledge engineer thinks that the definition of “woman”
in our example TBox (Figure 2.2) is not satisfactory, but if he also feels that he
is not able to define the concept “woman” in all detail, he can require that every
woman is a person with the specialization

Woman v Person. (2.7)

If we allow also specializations in a terminology, then the terminology loses its

Basic Description Logics 63

definitorial impact, even if it is acyclic. A set of axioms T is a generalized terminol-
ogy if the left-hand side of each axiom is an atomic concept and for every atomic
concept there is at most one axiom where it occurs on the left-hand side.

We shall transform a generalized terminology T into a regular terminology T̄ ,
containing definitions only, such that T̄ is equivalent to T in a sense that will be
specified below. We obtain T̄ from T by choosing for every specialization A v C
in T a new base symbol Ā and by replacing the specialization A v C with the
definition A ≡ Ā u C. The terminology T̄ is the normalization of T .

If a TBox contains the specialization (2.7), then the normalization contains the
definition

Woman ≡ Woman u Person.

Intuitively, the additional base symbol Woman stands for the qualities that dis-
tinguish a woman among persons. Thus, normalization results in a TBox with a
definition for Woman that is similar to the one in the Family TBox.

Proposition 2.10 Let T be a generalized terminology and T̄ its normalization.

• Every model of T̄ is a model of T .
• For every model I of T there is a model Ī of T̄ that has the same domain as I

and agrees with I on the atomic concepts and roles in T .

Proof The first claim holds because a model Ī of T̄ satisfies AĪ = (Ā u C)Ī =
ĀĪ ∩ C Ī , which implies AĪ ⊆ C Ī . Conversely, if I is a model of T , then the
extension Ī of I, defined by ĀĪ = AI , is a model of T̄ , because AI ⊆ CI implies
AI = AI ∩ CI = ĀĪ ∩ C Ī , and therefore Ī satisfies A ≡ Ā u C.

Thus, in theory, inclusion axioms do not add to the expressivity of terminolo-
gies. However, in practice, they are a convenient means to introduce terms into a
terminology that cannot be defined completely.

2.2.3 World descriptions

The second component of a knowledge base, in addition to the terminology or TBox,
is the world description or ABox.

2.2.3.1 Assertions about individuals

In the ABox, one describes a specific state of affairs of an application domain in
terms of concepts and roles. Some of the concept and role atoms in the ABox may
be defined names of the TBox. In the ABox, one introduces individuals, by giving
them names, and one asserts properties of these individuals. We denote individual

64 F. Baader, W. Nutt

MotherWithoutDaughter(MARY) Father(PETER)
hasChild(MARY, PETER) hasChild(PETER, HARRY)
hasChild(MARY, PAUL)

Fig. 2.4. A world description (ABox).

names as a, b, c. Using concepts C and roles R, one can make assertions of the
following two kinds in an ABox:

C(a), R(b, c).

By the first kind, called concept assertions, one states that a belongs to (the inter-
pretation of) C, by the second kind, called role assertions, one states that c is a
filler of the role R for b. For instance, if PETER, PAUL, and MARY are individual
names, then Father(PETER) means that Peter is a father, and hasChild(MARY, PAUL)
means that Paul is a child of Mary. An ABox, denoted as A, is a finite set of such
assertions. Figure 2.4 shows an example of an ABox.

In a simplified view, an ABox can be seen as an instance of a relational database
with only unary or binary relations. However, contrary to the “closed-world seman-
tics” of classical databases, the semantics of ABoxes is an “open-world semantics,”
since normally knowledge representation systems are applied in situations where one
cannot assume that the knowledge in the KB is complete.1 Moreover, the TBox
imposes semantic relationships between the concepts and roles in the ABox that do
not have counterparts in database semantics.

We give a semantics to ABoxes by extending interpretations to individual names.
From now on, an interpretation I = (∆I , ·I) not only maps atomic concepts and
roles to sets and relations, but in addition maps each individual name a to an
element aI ∈ ∆I . We assume that distinct individual names denote distinct objects.
Therefore, this mapping has to respect the unique name assumption (UNA), that is,
if a, b are distinct names, then aI 6= bI . The interpretation I satisfies the concept
assertion C(a) if aI ∈ CI , and it satisfies the role assertion R(a, b) if (aI , bI) ∈ RI .
An interpretation satisfies the ABox A if it satisfies each assertion in A. In this
case we say that I is a model of the assertion or of the ABox. Finally, I satisfies
an assertion α or an ABox A with respect to a TBox T if in addition to being a
model of α or of A, it is a model of T . Thus, a model of A and T is an abstraction
of a concrete world where the concepts are interpreted as subsets of the domain as
required by the TBox and where the membership of the individuals to concepts and
their relationships with one another in terms of roles respect the assertions in the
ABox.
1 We discuss implications of this difference in semantics in Section 2.2.4.4.

Basic Description Logics 65

2.2.3.2 Individual names in the description language

Sometimes, it is convenient to allow individual names (also called nominals) not
only in the ABox, but also in the description language. Some concept constructors
employing individuals occur in systems and have been investigated in the literature.
The most basic one is the “set” (or one-of) constructor, written

{a1, . . . , an},

where a1, . . . , an are individual names. As one would expect, such a set concept is
interpreted as

{a1, . . . , an}I = {aI1 , . . . , aIn}. (2.8)

With sets in the description language one can for instance define the concept of per-
manent members of the UN security council as {CHINA, FRANCE, RUSSIA, UK, USA}.

In a language with the union constructor “t”, a constructor {a} for singleton sets
alone adds sufficient expressiveness to describe arbitrary finite sets since, according
to the semantics of the set constructor in Equation (2.8), the concepts {a1, . . . , an}
and {a1} t · · · t {an} are equivalent.

Another constructor involving individual names is the “fills” constructor

R : a,

for a role R. The semantics of this constructor is defined as

(R : a)I = {d ∈ ∆I | (d, aI) ∈ RI}, (2.9)

that is, R : a stands for the set of those objects that have a as a filler of the role R.
To a description language with singleton sets and full existential quantification,
“fills” does not add anything new, since Equation (2.9) implies that R : a and
∃R.{a} are equivalent.

We note, finally, that “fills” allows one to express role assertions through concept
assertions: an interpretation satisfies R(a, b) iff it satisfies (∃R.{b})(a).

2.2.4 Inferences

A knowledge representation system based on DLs is able to perform specific kinds
of reasoning. As said before, the purpose of a knowledge representation system goes
beyond storing concept definitions and assertions. A knowledge base—comprising
TBox and ABox—has a semantics that makes it equivalent to a set of axioms in
first-order predicate logic. Thus, like any other set of axioms, it contains implicit
knowledge that can be made explicit through inferences. For example, from the
TBox in Figure 2.2 and the ABox in Figure 2.4 one can conclude that Mary is a
grandmother, although this knowledge is not explicitly stated as an assertion.

66 F. Baader, W. Nutt

The different kinds of reasoning performed by a DL system (see Chapter 8) are
defined as logical inferences. In the following, we shall discuss these inferences,
first for concepts, then for TBoxes and ABoxes, and finally for TBoxes and ABoxes
together. It will turn out that there is one main inference problem, namely the
consistency check for ABoxes, to which all other inferences can be reduced.

2.2.4.1 Reasoning tasks for concepts

When a knowledge engineer models a domain, she constructs a terminology, say T ,
by defining new concepts, possibly in terms of others that have been defined before.
During this process, it is important to find out whether a newly defined concept
makes sense or whether it is contradictory. From a logical point of view, a concept
makes sense for us if there is some interpretation that satisfies the axioms of T
(that is, a model of T) such that the concept denotes a nonempty set in that
interpretation. A concept with this property is said to be satisfiable with respect
to T and unsatisfiable otherwise.

Checking satisfiability of concepts is a key inference. As we shall see, a number of
other important inferences for concepts can be reduced to the (un)satisfiability. For
instance, in order to check whether a domain model is correct, or to optimize queries
that are formulated as concepts, we may want to know whether some concept is
more general than another one: this is the subsumption problem. A concept C is
subsumed by a concept D if in every model of T the set denoted by C is a subset
of the set denoted by D. Algorithms that check subsumption are also employed
to organize the concepts of a TBox in a taxonomy according to their generality.
Further interesting relationships between concepts are equivalence and disjointness.

These properties are formally defined as follows. Let T be a TBox.

Satisfiability: A concept C is satisfiable with respect to T if there exists a model
I of T such that CI is nonempty. In this case we say also that I is a model
of C.

Subsumption: A concept C is subsumed by a concept D with respect to T if
CI ⊆ DI for every model I of T . In this case we write C vT D or
T |= C v D.

Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI

for every model I of T . In this case we write C ≡T D or T |= C ≡ D.
Disjointness: Two concepts C and D are disjoint with respect to T if CI∩DI = ∅

for every model I of T .

If the TBox T is clear from the context, we sometimes drop the qualification “with
respect to T .”

We also drop the qualification in the special case where the TBox is empty, and

Basic Description Logics 67

we simply write |= C v D if C is subsumed by D, and |= C ≡ D if C and D are
equivalent.

Example 2.11 With respect to the TBox in Figure 2.2, Person subsumes Woman,
both Woman and Parent subsume Mother, and Mother subsumes Grandmother.
Moreover, Woman and Man, and Father and Mother are disjoint. The subsump-
tion relationships follow from the definitions because of the semantics of “u” and
“t”. That Man is disjoint from Woman is due to the fact that Man is subsumed by
the negation of Woman.

Traditionally, the basic reasoning mechanism provided by DL systems checked
the subsumption of concepts. This, in fact, is sufficient to implement also the other
inferences, as can be seen by the following reductions.

Proposition 2.12 (Reduction to Subsumption) For concepts C, D we have

(i) C is unsatisfiable ⇔ C is subsumed by ⊥;
(ii) C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;
(iii) C and D are disjoint ⇔ C uD is subsumed by ⊥.

The statements also hold with respect to a TBox.

All description languages implemented in actual DL systems provide the inter-
section operator “u” and almost all of them contain an unsatisfiable concept. Thus,
most DL systems that can check subsumption can perform all four inferences defined
above.

If, in addition to intersection, a system allows one also to form the negation of a
description, one can reduce subsumption, equivalence, and disjointness of concepts
to the satisfiability problem (see also Smolka [1988]).

Proposition 2.13 (Reduction to Unsatisfiability) For concepts C, D we have

(i) C is subsumed by D ⇔ C u ¬D is unsatisfiable;
(ii) C and D are equivalent ⇔ both (C u ¬D) and (¬C uD) are unsatisfiable;
(iii) C and D are disjoint ⇔ C uD is unsatisfiable.

The statements also hold with respect to a TBox.

The reduction of subsumption can easily be understood if one recalls that, for
sets M , N , we have M ⊆ N iff M \N = ∅. The reduction of equivalence is correct
because C and D are equivalent if, and only if, C is subsumed by D and D is
subsumed by C. Finally, the reduction of disjointness is just a rephrasing of the
definition.

68 F. Baader, W. Nutt

Because of the above proposition, in order to obtain decision procedures for any
of the four inferences we have discussed, it is sufficient to develop algorithms that
decide the satisfiability of concepts, provided the language for which we can decide
satisfiability supports conjunction as well as negation of arbitrary concepts.

In fact, this observation motivated researchers to study description languages in
which, for every concept, one can also form the negation of that concept [Smolka,
1988; Schmidt-Schauß and Smolka, 1991; Donini et al., 1991b; 1997a]. The ap-
proach to consider satisfiability checking as the principal inference gave rise to a
new kind of algorithms for reasoning in DLs, which can be understood as special-
ized tableaux calculi (see Section 2.3 in this chapter and Chapter 3). Also, the most
recent generation of DL systems, like Kris [Baader and Hollunder, 1991b], Crack
[Bresciani et al., 1995], Fact [Horrocks, 1998b], Dlp [Patel-Schneider, 1999], and
Race [Haarslev and Möller, 2001e], are based on satisfiability checking, and a
considerable amount of research work is spent on the development of efficient im-
plementation techniques for this approach [Baader et al., 1994; Horrocks, 1998b;
Horrocks and Patel-Schneider, 1999; Haarslev and Möller, 2001c].

In an AL-language without full negation, subsumption and equivalence cannot be
reduced to unsatisfiability in the simple way shown in Proposition 2.13 and therefore
these inferences may be of different complexity.

As seen in Proposition 2.12, from the viewpoint of worst-case complexity, sub-
sumption is the most general inference for any AL-language. The next proposition
shows that unsatisfiability is a special case of each of the other problems.

Proposition 2.14 (Reducing Unsatisfiability) Let C be a concept. Then the
following are equivalent:

(i) C is unsatisfiable;
(ii) C is subsumed by ⊥;
(iii) C and ⊥ are equivalent;
(iv) C and > are disjoint.

The statements also hold with respect to a TBox.

From Propositions 2.12 and 2.14 we see that, in order to obtain upper and lower
complexity bounds for inferences on concepts in AL-languages, it suffices to assess
lower bounds for unsatisfiability and upper bounds for subsumption. More precisely,
for each AL-language, an upper bound for the complexity of the subsumption prob-
lem is also an upper bound for the complexity of the unsatifiability, the equivalence,
and the disjointness problem. Moreover, a lower bound for the complexity of the
unsatifiability problem is also a lower bound for the complexity of the subsumption,
the equivalence, and the disjointness problem.

Basic Description Logics 69

2.2.4.2 Eliminating the TBox

In applications, concepts usually come in the context of a TBox. However, for
developing reasoning procedures it is conceptually easier to abstract from the TBox
or, what amounts to the same, to assume that it is empty.

We show that, if T is an acyclic TBox, we can always reduce reasoning problems
with respect to T to problems with respect to the empty TBox. As we have seen in
Proposition 2.1, T is equivalent to its expansion T ′. Recall that in the expansion
every definition is of the form A ≡ D such that D contains only base symbols,
but no name symbols. Now, for each concept C we define the expansion of C with
respect to T as the concept C ′ that is obtained from C by replacing each occurrence
of a name symbol A in C by the concept D, where A ≡ D is the definition of A
in T ′, the expansion of T .

For example, we obtain the expansion of the concept

Woman uMan (2.10)

with respect to the TBox in Figure 2.2 by considering the expanded TBox in Fig-
ure 2.3, and replacing Woman and Man with the right-hand sides of their definitions
in this expansion. This results in the concept

Person u Female u Person u ¬(Person u Female). (2.11)

We can readily deduce a number of facts about expansions. Since the expansion C ′

is obtained from C by replacing names with descriptions in such a way that both
are interpreted in the same way in any model of T , it follows that

• C ≡T C ′.

Hence, C is satisfiable w.r.t. T iff C ′ is satisfiable w.r.t. T . However, C ′ contains
no defined names, and thus C ′ is satisfiable w.r.t. T iff it is satisfiable. This yields
that

• C is satisfiable w.r.t. T iff C ′ is satisfiable.

If D is another concept, then we have also D ≡T D′. Thus, C vT D iff C ′ vT D′,
and C ≡T D iff C ′ ≡T D′. Again, since C ′ and D′ contain only base symbols, this
implies

• T |= C v D iff |= C ′ v D′;
• T |= C ≡ D iff |= C ′ ≡ D′.

With similar arguments we can show that

• C and D are disjoint w.r.t. T iff C ′ and D′ are disjoint.

70 F. Baader, W. Nutt

Summing up, expanding concepts with respect to an acyclic TBox allows one
to get rid of the TBox in reasoning problems. Going back to our example from
above, this means that, in order to verify whether Man and Woman are disjoint with
respect to the Family TBox, which amounts to checking whether Man uWoman is
unsatisfiable, it suffices to check that the concept (2.11) is unsatisfiable.

Expanding concepts may be computationally costly, since in the worst case the
size of T ′ is exponential in the size of T , and therefore C ′ may be larger than C by
a factor that is exponential in the size of T . A complexity analysis of the difficulty
of reasoning with respect to TBoxes shows that the expansion of definitions is a
source of complexity that cannot always be avoided (see Subsection 2.3.3 of this
chapter and Chapter 3).

2.2.4.3 Reasoning tasks for ABoxes

After a knowledge engineer has designed a terminology and has used the reasoning
services of her DL system to check that all concepts are satisfiable and that the
the expected subsumption relationships hold, the ABox can be filled with assertions
about individuals. We recall that an ABox contains two kinds of assertions, concept
assertions of the form C(a) and role assertions of the form R(a, b). Of course, the
representation of such knowledge has to be consistent, because otherwise—from the
viewpoint of logic—one could draw arbitrary conclusions from it. If, for example,
the ABox contains the assertions Mother(MARY) and Father(MARY), the system
should be able to find out that, together with the Family TBox, these statements
are inconsistent.

In terms of our model theoretic semantics we can easily give a formal definition
of consistency. An ABox A is consistent with respect to a TBox T , if there is an
interpretation that is a model of both A and T . We simply say that A is consistent
if it is consistent with respect to the empty TBox.

For example, the set of assertions {Mother(MARY), Father(MARY)} is consistent
(with respect to the empty TBox), because without any further restrictions on the
interpretation of Mother and Father, the two concepts can be interpreted in such a
way that they have a common element. However, the assertions are not consistent
with respect to the Family TBox, since in every model of it, Mother and Father are
interpreted as disjoint sets.

Similarly as for concepts, checking the consistency of an ABox with respect to
an acyclic TBox can be reduced to checking an expanded ABox. We define the
expansion of A with respect to T as the ABox A′ that is obtained from A by
replacing each concept assertion C(a) in A with the assertion C ′(a), where C ′ is
the expansion of C with respect to T .1 In every model of T , a concept C and its
1 We expand only concept assertions because the description language considered until now does not pro-

vide constructors for role descriptions and therefore we have not considered TBoxes with role definitions.

Basic Description Logics 71

expansion C ′ are interpreted in the same way. Therefore, A′ is consistent w.r.t. T
iff A is so. However, since A′ does not contain a name symbol defined in T , it is
consistent w.r.t. T iff it is consistent. We conclude:

• A is consistent w.r.t. T iff its expansion A′ is consistent.

A technique to check the consistency of ALCN -ABoxes is discussed in Section 2.3.2.
Other inferences that we are going to introduce can also be defined with respect

to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded
ABoxes. For the sake of simplicity, we shall give only definitions of inferences with
ABoxes alone, and leave it to the reader to formulate the appropriate generalization
to inferences with respect to TBoxes and to verify that they can be reduced to
inferences about expansions, provided the TBox is acyclic.

Over an ABox A, one can pose queries about the relationships between concepts,
roles and individuals. The prototypical ABox inference on which such queries are
based is the instance check, or the check whether an assertion is entailed by an
ABox. We say that an assertion α is entailed by A and we write A |= α, if every
interpretation that satisfies A, that is, every model of A, also satisfies α. If α
is a role assertion, the instance check is easy, since our description language does
not contain constructors to form complex roles. If α is of the form C(a), we can
reduce the instance check to the consistency problem for ABoxes because there is
the following connection:

• A |= C(a) iff A ∪ {¬C(a)} is inconsistent.

Also reasoning about concepts can be reduced to consistency checking. We have
seen in Proposition 2.13 that the important reasoning problems for concepts can be
reduced to the one to decide whether a concept is (un)satisfiable. Similarly, concept
satisfiability can be reduced to ABox consistency because for every concept C we
have

• C is satisfiable iff {C(a)} is consistent,

where a is an arbitrarily chosen individual name. Conversely, Schaerf has shown
that ABox consistency can be reduced to concept satisfiability in languages with
the “set” and the “fills” constructor [Schaerf, 1994b]. If these constructors are not
available, however, then instance checking may be harder than the satisfiability and
the subsumption problem [Donini et al., 1994b].

For applications, usually more complex inferences than consistency and instance

If the description language is richer, and TBoxes contain also role definitions, then they clearly have to
be taken into account in the definition of expansions.

72 F. Baader, W. Nutt

checking are required. If we consider a knowledge base as a means to store informa-
tion about individuals, we may want to know all individuals that are instances of a
given concept description C, that is, we use the description language to formulate
queries. In our example, we may want to know from the system all parents that
have at least two children—for instance, because they are entitled to a specific fam-
ily tax break. The retrieval problem is, given an ABox A and a concept C, to find
all individuals a such that A |= C(a). A non-optimized algorithm for a retrieval
query can be realized by testing for each individual occurring in the ABox whether
it is an instance of the query concept C.

The dual inference to retrieval is the realization problem: given an individual
a and a set of concepts, find the most specific concepts C from the set such that
A |= C(a). Here, the most specific concepts are those that are minimal with respect
to the subsumption ordering v. Realization can, for instance, be used in systems
that generate natural language if terms are indexed by concepts and if a term as
precise as possible is to be found for an object occurring in a discourse.

2.2.4.4 Closed- vs. open-world semantics

Often, an analogy is established between databases on the one hand and DL knowl-
edge bases on the other hand (see also Chapter 16). The schema of a database
is compared to the TBox and the instance with the actual data is compared to
the ABox. However, the semantics of ABoxes differs from the usual semantics of
database instances. While a database instance represents exactly one interpreta-
tion, namely the one where classes and relations in the schema are interpreted by the
objects and tuples in the instance, an ABox represents many different interpreta-
tions, namely all its models. As a consequence, absence of information in a database
instance is interpreted as negative information, while absence of information in an
ABox only indicates lack of knowledge.

For example, if the only assertion about Peter is hasChild(PETER, HARRY), then
in a database this is understood as a representation of the fact that Peter has only
one child, Harry. In an ABox, the assertion only expresses that, in fact, Harry is
a child of Peter. However, the ABox has several models, some in which Harry is
the only child and others in which he has brothers or sisters. Consequently, even if
one also knows (by an assertion) that Harry is male, one cannot deduce that all of
Peter’s children are male. The only way of stating in an ABox that Harry is the only
child is by doing so explicitly, that is by adding the assertion (6 1 hasChild)(PETER).
This means that, while the information in a database is always understood to be
complete, the information in an ABox is in general viewed as being incomplete.
The semantics of ABoxes is therefore sometimes characterized as an “open-world”
semantics, while the traditional semantics of databases is characterized as a “closed-
world” semantics.

Basic Description Logics 73

hasChild(IOKASTE,OEDIPUS) hasChild(IOKASTE, POLYNEIKES)
hasChild(OEDIPUS,POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Fig. 2.5. The Oedipus ABox Aoe.

This view has consequences for the way queries are answered. Essentially, a
query is a description of a class of objects. In our setting, we assume that queries
are concept descriptions. A database (in the sense introduced above) is a listing
of a single finite interpretation. A finite interpretation, say I, could be written up
as a set of assertions of the form A(a) and R(b, c), where A is an atomic concept
and R an atomic role. Such a set looks syntactically like an ABox, but is not an
ABox because of the difference in semantics. Answering a query, represented by a
complex concept C, over that database amounts to computing CI as it was defined
in Section 2.2.1. From a logical point of view this means that query evaluation in
a database is not logical reasoning, but finite model checking (i.e., evaluation of a
formula in a fixed finite model).

Since an ABox represents possibly infinitely many interpretations, namely its
models, query answering is more complex: it requires nontrivial reasoning. Here
we are only concerned with semantical issues (algorithmic aspects will be treated
in Section 2.3). To illustrate the difference between a semantics that identifies a
database with a single model, and the open-world semantics of ABoxes, we dis-
cuss the so-called Oedipus example, which has stimulated a number of theoretical
developments in DL research.

Example 2.15 The example is based on the Oedipus story from ancient Greek
mythology. In a nutshell, the story recounts how Oedipus killed his father, married
his mother Iokaste, and had children with her, among them Polyneikes. Finally,
also Polyneikes had children, among them Thersandros.

We suppose the ABox Aoe in Figure 2.5 represents some rudimentary facts about
these events. For the sake of the example, our ABox asserts that Oedipus is a
patricide and that Thersandros is not, which is represented using the atomic concept
Patricide.

Suppose now that we want to know from the ABox whether Iokaste has a child
that is a patricide and that itself has a child that is not a patricide. This can be
expressed as the entailment problem

Aoe |= (∃hasChild.(Patricide u ∃hasChild.¬Patricide))(IOKASTE) ?

One may be tempted to reason as follows. Iokaste has two children in the ABox.

74 F. Baader, W. Nutt

One, Oedipus, is a patricide. He has one child, Polyneikes. But nothing tells us that
Polyneikes is not a patricide. So, Oedipus is not the child we are looking for. The
other child is Polyneikes, but again, nothing tells us that Polyneikes is a patricide.
So, Polyneikes is also not the child we are looking for. Based on this reasoning, one
would claim that the assertion about Iokaste is not entailed.

However, the correct reasoning is different. All the models of Aoe can be divided
into two classes, one in which Polyneikes is a patricide, and another one in which he
is not. In a model of the first kind, Polyneikes is the child of Iokaste that is a patri-
cide and has a child, namely Thersandros, that isn’t. In a model of the second kind,
Oedipus is the child of Iokaste that is a patricide and has a child, namely Polyneikes,
that isn’t. Thus, in all models Iokaste has a child that is a patricide and that itself
has a child that is not a patricide (though this is not always the same child). This
means that the assertion (∃hasChild.(Patricide u ∃hasChild.¬Patricide))(IOKASTE) is
indeed entailed by Aoe.

As this example shows, open-world reasoning may require to make case analyses.
As will be explained in more detail in Chapter 3, this is one of the reasons why
inferences in DLs are often more complex than query answering in databases.

2.2.5 Rules

The knowledge bases we have discussed so far consist of a TBox T and an ABox A.
We denote such a knowledge base as a pair K = (T ,A).

In some DL systems, such as Classic [Brachman et al., 1991] or Loom [Mac-
Gregor, 1991a], in addition to terminologies and world descriptions, one can also
use rules to express knowledge. The simplest variant of such rules are expressions
of the form

C ⇒ D,

where C, D are concepts. The meaning of such a rule is “if an individual is proved
to be an instance of C, then derive that it is also an instance of D.” Such rules are
often called trigger rules.

Operationally, the semantics of a finite set R of trigger rules can be described
by a forward reasoning process. Starting with an initial knowledge base K, a se-
ries of knowledge bases K(0), K(1), . . . is constructed, where K(0) = K and K(i+1)

is obtained from K(i) by adding a new assertion D(a) whenever R contains a rule
C ⇒ D such that K(i) |= C(a) holds, but K(i) does not contain D(a). This pro-
cess eventually halts because the initial knowledge base contains only finitely many
individuals and there are only finitely many rules. Hence, there are only finitely
many assertions D(a) that can possibly be added. The result of the rule applica-

Basic Description Logics 75

tions is a knowledge base K(n) that has the same TBox as K(0) and whose ABox
is augmented by the membership assertions introduced by the rules. We call this
final knowledge base the procedural extension of K and denote it as K̄. It is easy to
see that this procedural extension is independent of the order of rule applications.
Consequently, a set of trigger rules R uniquely specifies how to generate, for each
knowledge base K, an extended knowledge base K̄. The semantics of a knowledge
base K, augmented by a set of trigger rules, can thus be understood as the set of
models of K̄.

This defines the semantics of trigger rules only operationally. It would be prefer-
able to specify the semantics declaratively and then to prove that the extension
computed with the trigger rules correctly represents this semantics. It might be
tempting to use the declarative semantics of inclusion axioms as semantics for rules.
However, this does not correctly reflect the operational semantics given above. An
important difference between the trigger rule C ⇒ D and the inclusion axiom
C v D is that the trigger rule is not equivalent to its contrapositive ¬D ⇒ ¬C.
In addition, when applying trigger rules one does not make a case analysis. For
example, the inclusions C v D and ¬C v D imply that every object belongs to D,
whereas none of the trigger rules C ⇒ D and ¬C ⇒ D applies to an individual a
for which neither C(a) nor ¬C(a) can be proven.

In order to capture the meaning of trigger rules in a declarative way, we must
augment description logics by an operator K, which does not refer to objects in the
domain, but to what the knowledge base knows about the domain. Therefore, K
is an epistemic operator. More information on epistemic operators in DLs can be
found in Chapter 6.

To introduce the K-operator, we enrich both the syntax and the semantics of de-
scription languages. Originally, the K-operator has been defined for ALC [Donini
et al., 1992b; 1998a]. In this subsection, we discuss only how to extend the basic
language AL. For other languages, one can proceed analogously (see also Chap-
ter 6).

First, we add one case to the syntax rule in Section 2.2.1.1 that allows us to
construct epistemic concepts:

C, D −→ KC (epistemic concept).

Intuitively, the concept KC denotes those objects for which the knowledge base
knows that they are instances of C.

Next, using K, we translate trigger rules C ⇒ D into inclusion axioms

KC v D. (2.12)

Intuitively, the K operator in front of the concept C has the effect that the axiom
is only applicable to individuals that appear in the ABox and for which ABox and

76 F. Baader, W. Nutt

TBox imply that they are instances of C. Such a restricted applicability prevents the
inclusion axiom from influencing satisfiability or subsumption relationships between
concepts. In the sequel, we will define a formal semantics for the operator K that
has exactly this effect.

A rule knowledge base is a triple K = (T ,A,R), where T is a TBox, A is an ABox,
and R is a set of rules written as inclusion axioms of the form (2.12). The procedural
extension of such a triple is the knowledge base K̄ = (T , Ā) that is obtained from
(T ,A) by applying the trigger rules as described above.

The semantics of epistemic inclusions will be defined in such a way that it applies
only to individuals in the knowledge base that provably are instances of C, but not to
arbitrary domain elements, which would be the case if we dropped K. The semantics
will go beyond first-order logic because we not only have to interpret concepts, roles
and individuals, but also have to model the knowledge of a knowledge base. The
fact that a knowledge base has knowledge about the domain can be understood
in such a way that it considers only a subset W of the set of all interpretations as
possible states of the world. Those individuals that are interpreted as elements of C
under all interpretations in W are then “known” to be in C.

To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that:

(i) there is a fixed countably infinite set ∆ that is the domain of every interpre-
tation (Common Domain Assumption);

(ii) there is a mapping γ from the individuals to the domain elements that fixes
the way individuals are interpreted (Rigid Term Assumption).

The Common Domain Assumption guarantees that all interpretations speak about
the same domain. The Rigid Term Assumption allows us to identify each individual
symbols with exactly one domain element. These assumptions do not essentially
reduce the number of possible interpretations. As a consequence, properties like
satisfiability and subsumption of concepts are the same independently of whether
we define them with respect to arbitrary interpretations or those that satisfy the
above assumptions.

Now, we define an epistemic interpretation as a pair (I,W), where I is a first-
order interpretation and W is a set of first-order interpretations, all satisfying the
above assumptions. Every epistemic interpretation gives rise to a unique map-
ping ·I,W associating concepts and roles with subsets of ∆ and ∆×∆, respectively.
For >, ⊥, for atomic concepts, negated atomic concepts, and for atomic roles, ·I,W

agrees with ·I . For intersections, value restrictions, and existential quantifications,
the definition is similar to the one of ·I :

(C uD)I,W = CI,W ∩DI,W

Basic Description Logics 77

(∀R.C)I,W = {a ∈ ∆ | ∀b. (a, b) ∈ RI,W → b ∈ CI,W}
(∃R.>)I,W = {a ∈ ∆ | ∃b. (a, b) ∈ RI,W}.

For other constructors, ·I,W can be defined analogously. Note that for a concept C
without an occurrence of K, the sets CI,W and CI are identical. The set of in-
terpretations W comes into play when we define the semantics of the epistemic
operator:

(KC)I,W =
⋂

J∈W
CJ ,W .

It would also be possible to allow the operator K to occur in front of roles and
to define the semantics of role expressions of the form KR analogously. However,
since epistemic roles are not needed to explain the semantics of rules, we restrict
ourselves to epistemic concepts.

An epistemic interpretation (I,W) satisfies an inclusion C v D if CI,W ⊆ DI,W ,
and an equality C ≡ D if CI,W = DI,W . It satisfies an assertion C(a) if aI,W =
γ(a) ∈ CI,W , and an assertion R(a, b) if (aI,W , bI,W) = (γ(a), γ(b)) ∈ RI,W . It
satisfies a rule knowledge base K = (T ,A,R) if it satisfies every axiom in T , every
assertion in A, and every rule in R.

An epistemic model for a rule knowledge base K is a maximal nonempty set W of
first-order interpretations such that, for each I ∈ W , the epistemic interpretation
(I,W) satisfies K.

Note that, if (T ,A) is first-order satisfiable, then the set of all first-order models of
(T ,A) is the only epistemic model of the rule knowledge base K = (T ,A, ∅), whose
rule set is empty. A similar statement holds for arbitrary rule knowledge bases.
One can show that, if W1 and W2 are epistemic models, then the union W1 ∪W2 is
one, too, which implies W1 = W2 because of the maximality of epistemic models.

Proposition 2.16 Let K = (T ,A,R) be a rule knowledge base such that (T ,A) is
first-order satisfiable. Then K has a unique epistemic model.

Example 2.17 Let R consist of the rule

KStudent v ∀eats.JunkFood. (2.13)

The rule states that “those individuals that are known to be students eat only junk
food”.

We consider the rule knowledge base K1 = (∅,A1,R), where

A1 = {Student(PETER)}.

Let us determine the epistemic model W of K1. Every first-order interpretation
I ∈ W must satisfy A1. Therefore, in every such I, we have that Student(PETER)

78 F. Baader, W. Nutt

is true, and thus Peter is known to be a student. Since W satisfies Rule (2.13), also
the assertion ∀eats.JunkFood(PETER) holds in every I.

For any other domain element a ∈ ∆, there is at least one interpretation in W
where a is not a student. Thus, Peter is the only domain element to which the rule
applies. Summing up, the epistemic model of K1 consists exactly of the first order
models of A1 ∪ {∀eats.JunkFood(PETER)}.

Next we demonstrate with this example that the epistemic semantics for rules
disallows for contrapositive reasoning. We consider the rule knowledge base K2 =
(∅,A2,R), where

A2 = {¬∀eats.JunkFood(PETER)}.

In this case, ¬∀eats.JunkFood(PETER) is true in every first-order interpretation of
the epistemic model W. However, because of the maximality of W, there is at least
one interpretation in W in which Peter is a student and another one where Peter is
not a student. Therefore, Peter is not known to be a student. Thus, the epistemic
model of K2 consists exactly of the first order models of A2. The rule is satisfied
because the antecedent is false.

Clearly, the procedural extension of a rule knowledge base K contains only asser-
tions that must be satisfied by the epistemic model of K. It can be shown that the
assertions added to K by the rule applications are in fact, as stated in the following
proposition, a first-order representation of the information that is implicit in the
rules (see [Donini et al., 1998a] for a proof).

Proposition 2.18 Let K = (T ,A,R) be a rule knowledge base. If (T ,A) is first-
order satisfiable, then the epistemic model of K consists precisely of the first-order
models of the procedural extension K̄ = (T , Ā).

2.3 Reasoning algorithms

In Section 2.2.4 we have seen that all the relevant inference problems can be re-
duced to the consistency problem for ABoxes, provided that the DL at hand allows
for conjunction and negation. However, the description languages of all the early
and also of some of the present day DL systems do not allow for negation. For
such DLs, subsumption of concepts can usually be computed by so-called structural
subsumption algorithms, i.e., algorithms that compare the syntactic structure of
(possibly normalized) concept descriptions. In the first subsection, we will consider
such algorithms in more detail. While they are usually very efficient, they are only
complete for rather simple languages with little expressivity. In particular, DLs
with (full) negation and disjunction cannot be handled by structural subsumption

Basic Description Logics 79

algorithms. For such languages, so-called tableau-based algorithms have turned out
to be very useful. In the area of Description Logics, the first tableau-based al-
gorithm was presented by Schmidt-Schauß and Smolka [1991] for satisfiability of
ALC-concepts. Since then, this approach has been employed to obtain sound and
complete satisfiability (and thus also subsumption) algorithms for a great variety of
DLs extending ALC (see, e.g., [Hollunder et al., 1990; Hollunder and Baader, 1991a;
Donini et al., 1997a; Baader and Sattler, 1999] for languages with number
restrictions; [Baader, 1991] for transitive closure of roles and [Sattler, 1996;
Horrocks and Sattler, 1999] for transitive roles; and [Baader and Hanschke, 1991a;
Hanschke, 1992; Haarslev et al., 1999] for constructors that allow to refer to
concrete domains such as numbers). In addition, it has been extended to the
consistency problem for ABoxes [Hollunder, 1990; Baader and Hollunder, 1991b;
Donini et al., 1994b; Haarslev and Möller, 2000], and to TBoxes allowing for gen-
eral sets of inclusion axioms and more [Buchheit et al., 1993a; Baader et al., 1996].
In the second subsection, we will first present a tableau-based satisfiability algo-
rithm for ALCN -concepts, then show how it can be extended to an algorithm for
the consistency problem for ABoxes, and finally explain how general inclusion ax-
ioms can be taken into account. The third subsection is concerned with reasoning
w.r.t. acyclic and cyclic terminologies.

Instead of designing new algorithms for reasoning in DLs, one can also try to re-
duce the problem to a known inference problem in logics (see also Chapter 4). For
example, decidability of the inference problems for ALC and many other DLs can
be obtained as a consequence of the known decidability result for the two variable
fragment of first-order predicate logic. The language L2 consists of all formulae
of first-order predicate logic that can be built with the help of predicate symbols
(including equality) and constant symbols (but without function symbols) using
only the variables x, y. Decidability of L2 has been shown in [Mortimer, 1975].
It is easy to see that, by appropriately re-using variable names, any concept de-
scription of the language ALC can be translated into an L2-formula with one free
variable (see [Borgida, 1996] for details). A direct translation of the concept de-
scription ∀R.(∃R.A) yields the formula ∀y.(R(x, y) → (∃z.(R(y, z) ∧A(z)))). Since
the subformula ∃z.(R(y, z)∧A(z)) does not contain x, this variable can be re-used:
renaming the bound variable z into x yields the equivalent formula ∀y.(R(x, y) →
(∃x.(R(y, x)∧A(x)))), which uses only two variables. This connection between ALC
and L2 shows that any extension of ALC by constructors that can be expressed with
the help of only two variables yields a decidable DL. Number restrictions and com-
position of roles are examples of constructors that cannot be expressed within L2.
Number restrictions can, however, be expressed in C2, the extension of L2 by count-
ing quantifiers, which has recently been shown to be decidable [Grädel et al., 1997b;
Pacholski et al., 1997]. It should be noted, however, that the complexity of the de-

80 F. Baader, W. Nutt

cision procedures obtained this way is usually higher than necessary: for example,
the satisfiability problem for L2 is NExpTime-complete, whereas satisfiability of
ALC-concept descriptions is “only” PSpace-complete.

Decision procedures with lower complexity can be obtained by using the con-
nection between DLs and propositional modal logics. Schild [1991] was the first
to observe that the language ALC is a syntactic variant of the propositional multi-
modal logic K, and that the extension of ALC by transitive closure of roles [Baader,
1991] corresponds to Propositional Dynamic Logic (pdl). In particular, some of
the algorithms used in propositional modal logics for deciding satisfiability are very
similar to the tableau-based algorithms newly developed for DLs. This connec-
tion between DLs and modal logics has been used to transfer decidability results
from modal logics to DLs [Schild, 1993; 1994; De Giacomo and Lenzerini, 1994a;
1994b] (see also Chapter 5). Instead of using tableau-based algorithms, decidabil-
ity of certain propositional modal logics (and thus of the corresponding DLs), can
also be shown by establishing the finite model property (see, e.g., [Fitting, 1993],
Section 1.14) of the logic (i.e., showing that a formula/concept is satisfiable iff it is
satisfiable in a finite interpretation) or by employing tree automata (see, e.g, [Vardi
and Wolper, 1986]).

2.3.1 Structural subsumption algorithms

These algorithms usually proceed in two phases. First, the descriptions to be tested
for subsumption are normalized, and then the syntactic structure of the normal
forms is compared. For simplicity, we first explain the ideas underlying this ap-
proach for the small language FL0, which allows for conjunction (C uD) and value
restrictions (∀R.C). Subsequently, we show how the bottom concept (⊥), atomic
negation (¬A), and number restrictions (6n R and >nR) can be handled. Evi-
dently, FL0 and its extension by bottom and atomic negation are sublanguages of
AL, while adding number restrictions to the resulting language yields the DL ALN .

An FL0-concept description is in normal form iff it is of the form

A1 u · · · uAm u ∀R1.C1 u · · · u ∀Rn.Cn,

where A1, . . . , Am are distinct concept names, R1, . . . , Rn are distinct role names,
and C1, . . . , Cn are FL0-concept descriptions in normal form. It is easy to see
that any description can be transformed into an equivalent one in normal form,
using associativity, commutativity and idempotence of u, and the fact that the
descriptions ∀R.(C uD) and (∀R.C) u (∀R.D) are equivalent.

Proposition 2.19 Let

A1 u · · · uAm u ∀R1.C1 u · · · u ∀Rn.Cn,

Basic Description Logics 81

be the normal form of the FL0-concept description C, and

B1 u · · · uBk u ∀S1.D1 u · · · u ∀Sl.Dl,

the normal form of the FL0-concept description D. Then C v D iff the following
two conditions hold:

(i) for all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Bi = Aj.
(ii) For all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n such that Si = Rj and Cj v Di.

It is easy to see that this characterization of subsumption is sound (i.e., the “if”
direction of the proposition holds) and complete (i.e., the “only-if” direction of the
proposition holds as well). This characterization yields an obvious recursive algo-
rithm for computing subsumption, which can easily be shown to be of polynomial
time complexity [Levesque and Brachman, 1987].

If we extend FL0 by language constructors that can express unsatisfiable con-
cepts, then we must, on the one hand, change the definition of the normal form.
On the other hand, the structural comparison of the normal forms must take into
account that an unsatisfiable concept is subsumed by every concept. The simplest
DL where this occurs is FL⊥, the extension of FL0 by the bottom concept ⊥.

An FL⊥-concept description is in normal form iff it is ⊥ or of the form

A1 u · · · uAm u ∀R1.C1 u · · · u ∀Rn.Cn,

where A1, . . . , Am are distinct concept names different from ⊥, R1, . . . , Rn are
distinct role names, and C1, . . . , Cn are FL⊥-concept descriptions in normal form.
Again, such a normal form can easily be computed. In principle, one just computes
the FL0-normal form of the description (where ⊥ is treated as an ordinary concept
name): B1 u · · · uBk u ∀R1.D1 u · · · u ∀Rn.Dn. If one of the Bis is ⊥, then replace
the whole description by ⊥. Otherwise, apply the same procedure recursively to
the Djs. For example, the FL0-normal form of ∀R.∀R.B uA u ∀R.(A u ∀R.⊥) is

A u ∀R.(A u ∀R.(B u ⊥)),

which yields the FL⊥-normal form

A u ∀R.(A u ∀R.⊥).

The structural subsumption algorithm for FL⊥ works just like the one for FL0,
with the only difference that ⊥ is subsumed by any description. For example,
∀R.∀R.BuAu∀R.(Au∀R.⊥) v ∀R.∀R.AuAu∀R.A since the recursive comparison
of their FL⊥-normal forms Au∀R.(Au∀R.⊥) and Au∀R.(Au∀R.A) finally leads
to the comparison of ⊥ and A.

The extension of FL⊥ by atomic negation (i.e., negation applied to concept names
only) can be treated similarly. During the computation of the normal form, negated

82 F. Baader, W. Nutt

concept names are just treated like concept names. If, however, a name and its
negation occur on the same level of the normal form, then ⊥ is added, which can
then be treated as described above. For example, ∀R.¬AuAu∀R.(Au∀R.B) is first
transformed into Au ∀R.(Au¬Au ∀R.B), then into Au ∀R.(⊥uAu¬Au ∀R.B),
and finally into A u ∀R.⊥. The structural comparison of the normal forms treats
negated concept names just like concept names.

Finally, if we consider the language ALN , the additional presence of number
restrictions leads to a new type of conflict. On the one hand, as in the case of
atomic negation, number restrictions may be conflicting with each other (e.g., > 2 R
and 6 1 R). On the other hand, at-least restrictions >nR for n ≥ 1 are in conflict
with value restrictions ∀R.⊥ that prohibit role successors. When computing the
normal form, one can again treat number restrictions like concept names, and then
take care of the new types of conflicts by introducing ⊥ and using it for normal-
ization as described above. During the structural comparison of normal forms, one
must also take into account inherent subsumption relationships between number
restrictions (e.g., > nR v > mR iff n ≥ m). A more detailed description of a struc-
tural subsumption algorithm working on a graph-like data structure for a language
extending ALN can be found in [Borgida and Patel-Schneider, 1994].

For larger DLs, structural subsumption algorithms usually fail to be complete.
In particular, they cannot treat disjunction, full negation, and full existential re-
striction ∃R.C. For languages including these constructors, the tableau-approach
to designing subsumption algorithms has turned out to be quite useful.

2.3.2 Tableau algorithms

Instead of directly testing subsumption of concept descriptions, these algorithms
use negation to reduce subsumption to (un)satisfiability of concept descriptions: as
we have seen in Subsection 2.2.4, C v D iff C u ¬D is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for ALCN in more de-
tail, we illustrate the underlying ideas by two simple examples. Let A, B be concept
names, and let R be a role name.

As a first example, assume that we want to know whether (∃R.A) u (∃R.B) is
subsumed by ∃R.(A u B). This means that we must check whether the concept
description

C = (∃R.A) u (∃R.B) u ¬(∃R.(A uB))

is unsatisfiable.
First, we push all negation signs as far as possible into the description, using

de Morgan’s rules and the usual rules for quantifiers. As a result, we obtain the

Basic Description Logics 83

description

C0 = (∃R.A) u (∃R.B) u ∀R.(¬A t ¬B),

which is in negation normal form, i.e., negation occurs only in front of concept
names.

Then, we try to construct a finite interpretation I such that CI
0 6= ∅. This means

that there must exist an individual in ∆I that is an element of CI
0 .

The algorithm just generates such an individual, say b, and imposes the constraint
b ∈ CI

0 on it. Since C0 is the conjunction of three concept descriptions, this means
that b must satisfy the following three constraints: b ∈ (∃R.A)I , b ∈ (∃R.B)I , and
b ∈ (∀R.(¬A t ¬B))I .

From b ∈ (∃R.A)I we can deduce that there must exist an individual c such that
(b, c) ∈ RI and c ∈ AI . Analogously, b ∈ (∃R.B)I implies the existence of an
individual d with (b, d) ∈ RI and d ∈ BI . In this situation, one should not assume
that c = d since this would possibly impose too many constraints on the individuals
newly introduced to satisfy the existential restrictions on b. Thus:

• For any existential restriction the algorithm introduces a new individual as role
filler, and this individual must satisfy the constraints expressed by the restriction.

Since b must also satisfy the value restriction ∀R.(¬A t ¬B), and c, d were
introduced as R-fillers of b, we obtain the additional constraints c ∈ (¬A t ¬B)I

and d ∈ (¬A t ¬B)I . Thus:

• The algorithm uses value restrictions in interaction with already defined role re-
lationships to impose new constraints on individuals.

Now c ∈ (¬At¬B)I means that c ∈ (¬A)I or c ∈ (¬B)I , and we must choose one
of these possibilities. If we assume c ∈ (¬A)I , this clashes with the other constraint
c ∈ AI , which means that this search path leads to an obvious contradiction. Thus
we must choose c ∈ (¬B)I . Analogously, we must choose d ∈ (¬A)I in order to
satisfy the constraint d ∈ (¬A t ¬B)I without creating a contradiction to d ∈ BI .
Thus:

• For disjunctive constraints, the algorithm tries both possibilities in successive at-
tempts. It must backtrack if it reaches an obvious contradiction, i.e., if the same
individual must satisfy constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an
obvious contradiction. This shows that C0 is satisfiable, and thus (∃R.A)u (∃R.B)
is not subsumed by ∃R.(AuB). The algorithm has generated an interpretation I as
witness for this fact: ∆I = {b, c, d}; RI = {(b, c), (b, d)}; AI = {c} and BI = {d}.

84 F. Baader, W. Nutt

For this interpretation, b ∈ CI
0 . This means that b ∈ ((∃R.A) u (∃R.B))I , but

b 6∈ (∃R.(A uB))I .
In our second example, we add a number restriction to the first concept of the

above example, i.e., we now want to know whether (∃R.A) u (∃R.B) u 6 1R is
subsumed by ∃R.(A u B). Intuitively, the answer should now be “yes” since 6 1 R
in the first concept ensures that the R-filler in A coincides with the R-filler in B,
and thus there is an R-filler in AuB. The tableau-based satisfiability algorithm first
proceeds as above, with the only difference that there is the additional constraint
b ∈ (6 1R)I . In order to satisfy this constraint, the two R-fillers c, d of b must be
identified with each other. Thus:

• If an at-most number restriction is violated then the algorithm must identify dif-
ferent role fillers.

In the example, the individual c = d must belong to both AI and BI , which
together with c = d ∈ (¬A t ¬B)I always leads to a clash. Thus, the search for a
counterexample to the subsumption relationship fails, and the algorithm concludes
that (∃R.A) u (∃R.B) u6 1R v ∃R.(A uB).

2.3.2.1 A tableau-based satisfiability algorithm for ALCN
Before we can describe the algorithm more formally, we need to introduce an ap-
propriate data structure in which to represent constraints like “a belongs to (the
interpretation of) C” and “b is an R-filler of a.” The original paper by Schmidt-
Schauß and Smolka [1991], and also many other papers on tableau algorithms for
DLs, introduce the new notion of a constraint system for this purpose. However,
if we look at the types of constraints that must be expressed, we see that they can
actually be represented by ABox assertions. As we have seen in the second example
above, the presence of at-most number restrictions may lead to the identification
of different individual names. For this reason, we will not impose the unique name
assumption (UNA) on the ABoxes considered by the algorithm. Instead, we allow
for explicit inequality assertions of the form x 6 .= y for individual names x, y, with
the obvious semantics that an interpretation I satisfies x 6 .= y iff xI 6= yI . These as-
sertions are assumed to be symmetric, i.e., saying that x 6 .= y belongs to an ABox A
is the same as saying that y 6 .= x belongs to A.

Let C0 by an ALCN -concept in negation normal form. In order to test satis-
fiability of C0, the algorithm starts with the ABox A0 = {C0(x0)}, and applies
consistency preserving transformation rules (see Figure 2.6) to the ABox until no
more rules apply. If the “complete” ABox obtained this way does not contain an ob-
vious contradiction (called clash), then A0 is consistent (and thus C0 is satisfiable),
and inconsistent (unsatisfiable) otherwise. The transformation rules that handle
disjunction and at-most restrictions are non-deterministic in the sense that a given

Basic Description Logics 85

The →u-rule
Condition: A contains (C1 uC2)(x), but it does not contain both C1(x) and C2(x).
Action: A′ = A ∪ {C1(x), C2(x)}.
The →t-rule
Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ = A ∪ {C1(x)}, A′′ = A ∪ {C2(x)}.
The →∃-rule
Condition: A contains (∃R.C)(x), but there is no individual name z such that C(z)

and R(x, z) are in A.
Action: A′ = A ∪ {C(y), R(x, y)} where y is an individual name not occurring in A.

The →∀-rule
Condition: A contains (∀R.C)(x) and R(x, y), but it does not contain C(y).
Action: A′ = A ∪ {C(y)}.
The →≥-rule
Condition: A contains (> nR)(x), and there are no individual names z1, . . . , zn such

that R(x, zi) (1 ≤ i ≤ n) and zi 6
.= zj (1 ≤ i < j ≤ n) are contained in A.

Action: A′ = A ∪ {R(x, yi) | 1 ≤ i ≤ n} ∪ {yi 6
.= yj | 1 ≤ i < j ≤ n}, where y1, . . . , yn

are distinct individual names not occurring in A.

The →≤-rule
Condition: A contains distinct individual names y1, . . . , yn+1 such that (6n R)(x)

and R(x, y1), . . . , R(x, yn+1) are in A, and yi 6
.= yj is not in A for some i 6= j.

Action: For each pair yi, yj such that i > j and yi 6
.= yj is not in A, the ABox

Ai,j = [yi/yj]A is obtained from A by replacing each occurrence of yi by yj .

Fig. 2.6. Transformation rules of the satisfiability algorithm.

ABox is transformed into finitely many new ABoxes such that the original ABox is
consistent iff one of the new ABoxes is so. For this reason we will consider finite
sets of ABoxes S = {A1, . . . ,Ak} instead of single ABoxes. Such a set is consistent
iff there is some i, 1 ≤ i ≤ k, such that Ai is consistent. A rule of Figure 2.6 is
applied to a given finite set of ABoxes S as follows: it takes an element A of S,
and replaces it by one ABox A′, by two ABoxes A′ and A′′, or by finitely many
ABoxes Ai,j .

The following lemma is an easy consequence of the definition of the transformation
rules:

Lemma 2.20 (Soundness) Assume that S ′ is obtained from the finite set of
ABoxes S by application of a transformation rule. Then S is consistent iff S ′
is consistent.

The second important property of the set of transformation rules is that the
transformation process always terminates:

86 F. Baader, W. Nutt

Lemma 2.21 (Termination) Let C0 be an ALCN -concept description in nega-
tion normal form. There cannot be an infinite sequence of rule applications

{{C0(x0)}} → S1 → S2 → · · · .

The main reasons for this lemma to hold are the following.1

Lemma 2.22 Let A be an ABox contained in Si for some i ≥ 1.

• For every individual x 6= x0 occurring in A, there is a unique sequence R1, . . . , R`

(` ≥ 1) of role names and a unique sequence x1, . . . , x`−1 of individual names
such that {R1(x0, x1), R2(x1, x2), . . . , R`(x`−1, x)} ⊆ A. In this case, we say that
x occurs on level ` in A.

• If C(x) ∈ A for an individual name x on level `, then the maximal role depth
of C (i.e., the maximal nesting of constructors involving roles) is bounded by the
maximal role depth of C0 minus `. Consequently, the level of any individual in A
is bounded by the maximal role depth of C0.

• If C(x) ∈ A, then C is a subdescription of C0. Consequently, the number of
different concept assertions on x is bounded by the size of C0.

• The number of different role successors of x in A (i.e., individuals y such that
R(x, y) ∈ A for a role name R) is bounded by the sum of the numbers occurring
in at-least restrictions in C0 plus the number of different existential restrictions
in C0.

Starting with {{C0(x0)}}, we thus obtain after a finite number of rule applications
a set of ABoxes ̂S to which no more rules apply. An ABox A is called complete
iff none of the transformation rules applies to it. Consistency of a set of complete
ABoxes can be decided by looking for obvious contradictions, called clashes. The
ABox A contains a clash iff one of the following three situations occurs:

(i) {⊥(x)} ⊆ A for some individual name x;
(ii) {A(x),¬A(x)} ⊆ A for some individual name x and some concept name A;
(iii) {(6nR)(x)} ∪ {R(x, yi) | 1 ≤ i ≤ n + 1} ∪ {yi 6

.= yj | 1 ≤ i < j ≤ n + 1} ⊆ A
for individual names x, y1, . . . , yn+1, a nonnegative integer n, and a role name
R.

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all the
ABoxes in ̂S contain a clash, then ̂S is inconsistent, and thus by the soundness
lemma {C0(x0)} is inconsistent as well. Consequently, C0 is unsatisfiable. If, how-
ever, one of the complete ABoxes in ̂S is clash-free, then ̂S is consistent. By sound-
ness of the rules, this implies consistency of {C0(x0)}, and thus satisfiability of C0.
1 A detailed proof of termination for a set of rules extending the one of Figure 2.6 can be found in [Baader

and Sattler, 1999]. A termination proof for a slightly different set of rules has been given in [Donini et
al., 1997a].

Basic Description Logics 87

Lemma 2.23 (Completeness) Any complete and clash-free ABox A has a model.

This lemma can be proved by defining the canonical interpretation IA induced
by A:

(i) the domain ∆IA of IA consists of all the individual names occurring in A;
(ii) for all atomic concepts A we define AIA = {x | A(x) ∈ A};
(iii) for all atomic roles R we define RIA = {(x, y) | R(x, y) ∈ A}.

By definition, IA satisfies all the role assertions in A. By induction on the structure
of concept descriptions, it is easy to show that it satisfies the concept assertions as
well. The inequality assertions are satisfied since x 6 .= y ∈ A only if x, y are different
individual names.

The facts stated in Lemma 2.22 imply that the canonical interpretation has the
shape of a finite tree whose depth is linearly bounded by the size of C0 and whose
branching factor is bounded by the sum of the numbers occurring in at-least restric-
tions in C0 plus the number of different existential restrictions in C0. Consequently,
ALCN has the finite tree model property, i.e., any satisfiable concept C0 is satis-
fiable in a finite interpretation I that has the shape of a tree whose root belongs
to C0.

To sum up, we have seen that the transformation rules of Figure 2.6 reduce
satisfiability of an ALCN -concept C0 (in negation normal form) to consistency of
a finite set ̂S of complete ABoxes. In addition, consistency of ̂S can be decided by
looking for obvious contradictions (clashes).

Theorem 2.24 It is decidable whether or not an ALCN -concept is satisfiable.

2.3.2.2 Complexity issues

The tableau-based satisfiability algorithm for ALCN presented above may need
exponential time and space. In fact, the size of the canonical interpretation built
by the algorithm may be exponential in the size of the concept description. For
example, consider the descriptions Cn (n ≥ 1), which are inductively defined as
follows:

C1 = ∃R.A u ∃R.B,

Cn+1 = ∃R.A u ∃R.B u ∀R.Cn.

Obviously, the size of Cn grows linearly in n. However, given the input description
Cn, the satisfiability algorithm introduced above generates a complete and clash-free
ABox whose canonical model is the full binary tree of depth n, and thus consists of
2n+1 − 1 individuals.

Nevertheless, the satisfiability algorithm can be modified such that it needs only

88 F. Baader, W. Nutt

polynomial space. The main reason is that different branches of the tree model
to be generated by the algorithm can be investigated separately. Since the com-
plexity class NPSpace coincides with PSpace [Savitch, 1970], it is sufficient to
describe a non-deterministic algorithm using only polynomial space, i.e., for every
non-deterministic rule we may simply assume that the algorithm chooses the cor-
rect alternative. In principle, the modified algorithm works as follows: it starts with
{C0(x0)} and

(i) applies the →u- and →t-rules as long as possible, and checks for clashes of
the form A(x0),¬A(x0) and ⊥(x0);

(ii) generates all the necessary direct successors of x0 using the →∃- and the
→≥-rule;

(iii) generates the necessary identifications of these direct successors using the
→≤-rule, and checks for clashes caused by at-most restrictions;

(iv) successively handles the successors in the same way.

Since after identification the remaining successors can be treated separately, the
algorithm needs to store only one path of the tree model to be generated, together
with the direct successors of the individuals on this path and the information which
of these successors must be investigated next. We already know that the length of
the path is linear in the size of the input description C0. Thus, the only remaining
obstacle on our way to a PSpace-algorithm is the fact that the number of direct
successors of an individual on the path also depends on the numbers in the at-least
restrictions. If we assumed these numbers to be written in base 1 representation
(where the size of the representation coincides with the number represented), this
would not be a problem. However, for bases larger than 1 (e.g., numbers in decimal
notation), the number represented may be exponential in the size of the represen-
tation. For example, the representation of 10n − 1 requires only n digits in base 10
representation. Thus, we cannot introduce all the successors required by at-least
restrictions while only using polynomial space in the size of the concept description
if the numbers in this description are written in decimal notation.

It turns out, however, that most of the successors required by the at-least re-
strictions need not be introduced at all. If an individual x obtains at least one
R-successor due to the application of the →∃-rule, then the →≥-rule need not be
applied to x for the role R. Otherwise, we simply introduce one R-successor as rep-
resentative. In order to detect inconsistencies due to conflicting number restrictions,
we need to add a new type of clash: {(6nR)(x), (>mR)(x)} ⊆ A for nonnegative
integers n < m. The canonical interpretation obtained by this modified algorithm
need not satisfy the at-least restrictions in C0. However, it can easily by modified to
an interpretation that does, by duplicating R-successors (more precisely, the whole
subtrees starting at these successors).

Basic Description Logics 89

Theorem 2.25 Satisfiability of ALCN -concept descriptions is PSpace-complete.

The above argument shows that the problem is in PSpace. The hardness result
follows from the fact that the satisfiability problem is already PSpace-hard for the
sublanguage ALC, which can be shown by a reduction from validity of Quantified
Boolean Formulae [Schmidt-Schauß and Smolka, 1991]. Since subsumption and
satisfiability of ALCN -concept descriptions can be reduced to each other in linear
time, this also shows that subsumption of ALCN -concept descriptions is PSpace-
complete.

2.3.2.3 Extension to the consistency problem for ABoxes

The tableau-based satisfiability algorithm described in Subsection 2.3.2.1 can easily
be extended to an algorithm that decides consistency of ALCN -ABoxes. Let A be
an ALCN -ABox such that (w.o.l.g.) all concept descriptions in A are in negation
normal form. To test A for consistency, we first add inequality assertions a 6 .= b for
every pair of distinct individual names a, b occurring in A.1 Let A0 be the ABox
obtained this way. The consistency algorithm applies the rules of Figure 2.6 to the
singleton set {A0}.

Soundness and completeness of the rule set can be shown as before. Unfortunately,
the algorithm need not terminate, unless one imposes a specific strategy on the order
of rule applications. For example, consider the ABox

A0 = {R(a, a), (∃R.A)(a), (6 1R)(a), (∀R.∃R.A)(a)}.

By applying the →∃-rule to a, we can introduce a new R-successor x of a:

A1 = A0 ∪ {R(a, x), A(x)}.

The →∀-rule adds the assertion (∃R.A)(x), which triggers an application of the
→∃-rule to x. Thus, we obtain the new ABox

A2 = A1 ∪ {(∃R.A)(x), R(x, y), A(y)}.

Since a has two R-successors in A2, the →≤-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

A3 = A0 ∪ {A(a), R(a, y), A(y)}.

Except for the individual names (and the assertion A(a), which is, however, irrele-
vant), A3 is identical to A1. For this reason, we can continue as above to obtain an
infinite chain of rule applications.

We can easily regain termination by requiring that generating rules (i.e., the rules
→∃ and →≥) may only be applied if none of the other rules is applicable. In the
1 This takes care of the UNA.

90 F. Baader, W. Nutt

above example, this strategy would prevent the application of the →∃-rule to x in
the ABox A1 ∪ {(∃R.A)(x)} since the →≤-rule is also applicable. After applying
the →≤-rule (which replaces x by a), the →∃-rule is no longer applicable since a
already has an R-successor that belongs to A.

Using a similar idea, one can reduce the consistency problem for ALCN -ABoxes
to satisfiability of ALCN -concept descriptions [Hollunder, 1996]. In principle, this
reduction works as follows: In a preprocessing step, one applies the transformation
rules only to old individuals (i.e., individuals present in the original ABox). Subse-
quently, one can forget about the role assertions, i.e., for each individual name in
the preprocessed ABox, the satisfiability algorithm is applied to the conjunction of
its concept assertions (see [Hollunder, 1996] for details).

Theorem 2.26 Consistency of ALCN -ABoxes is PSpace-complete.

2.3.2.4 Extension to general inclusion axioms

In the above subsections, we have considered the satisfiability problem for con-
cept descriptions and the consistency problem for ABoxes without an underlying
TBox. In fact, for acyclic TBoxes one can simply expand the definitions (see Sub-
section 2.2.4). Expansion is, however, no longer possibly if one allows for general
inclusion axioms of the form C v D, where C and D may be complex descrip-
tions. Instead of considering finitely many such axiom C1 v D1, . . . , Cn v Dn, it is
sufficient to consider the single axiom > v ̂C, where

̂C = (¬C1 tD1) u · · · u (¬Cn tDn).

The axiom > v ̂C simply says that any individual must belong to the concept ̂C.
The tableau algorithm introduced above can easily be modified such that it takes
this axiom into account: all individuals (both the original individuals and the ones
newly generated by the →∃- and the →≥-rule) are simply asserted to belong to ̂C.
However, this modification may obviously lead to nontermination of the algorithm.
For example, consider what happens if this algorithm is applied to test consistency
of the ABox A0 = {A(x0), (∃R.A)(x0)} w.r.t. the axiom > v ∃R.A: the algorithm
generates an infinite sequence of ABoxes A1,A2, . . . and individuals x1, x2, . . . such
that Ai+1 = Ai ∪ {R(xi, xi+1), A(xi+1), (∃R.A)(xi+1)}. Since all individuals xi

receive the same concept assertions as x0, we may say that the algorithms has run
into a cycle.

Termination can be regained by trying to detect such cyclic computations, and
then blocking the application of generating rules: the application of the rules →∃
and →≥ to an individual x is blocked by an individual y in an ABox A iff {D |
D(x) ∈ A} ⊆ {D′ | D′(y) ∈ A}. The main idea underlying blocking is that the
blocked individual x can use the role successors of y instead of generating new ones.

Basic Description Logics 91

For example, instead of generating a new R-successor for x1 in the above example,
one can simply use the R-successor of x0. This yields an interpretation I with
∆I = {x0, x1}, AI = ∆I , and RI = {(x0, x1), (x1, x1)}. Obviously, I is a model of
A0 and of the axiom > v ∃R.A.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and define that an individual x may only be blocked by
individuals y that occur before x in this enumeration. This, together with some
other technical assumptions, makes sure that an algorithm using this notion of
blocking is sound and complete as well as terminating (see [Buchheit et al., 1993a;
Baader et al., 1996] for details). Thus, consistency of ALCN -ABoxes w.r.t. general
inclusion axioms is decidable. It should be noted that the algorithm is no longer
in PSpace since it may generate role paths of exponential length before blocking
occurs. In fact, even for the language ALC, satisfiability w.r.t. a single general
inclusion axiom is known to be ExpTime-hard [Schild, 1994] (see also Chapter 3).
The tableau-based algorithm sketched above is a NExpTime algorithm. However,
using the translation technique mentioned at the beginning of this section, it can
be shown [De Giacomo, 1995] that ALCN -ABoxes and general inclusion axioms
can be translated into PDL, for which satisfiability can be decided in exponential
time. An ExpTime tableau algorithm for ALC with general inclusion axiom was
described by Donini and Massacci [2000].

Theorem 2.27 Consistency of ALCN -ABoxes w.r.t. general inclusion axioms is
ExpTime-complete.

2.3.2.5 Extension to other language constructors

The tableau-based approach to designing concept satisfiability and ABox consis-
tency algorithms can also be employed for languages with other concept and/or
role constructors. In principle, each new constructor requires a new rule, and this
rule can usually be obtained by simply considering the semantics of the constructor.
Soundness of such a rule is often very easy to show. More problematic are complete-
ness and termination since they must also take interactions between different rules
into account. As we have seen above, termination can sometimes only be obtained if
the application of rules is restricted by an appropriate strategy. Of course, one may
only impose such a strategy if one can show that it does not destroy completeness.

2.3.3 Reasoning w.r.t. terminologies

Recall that terminologies (TBoxes) are sets of concept definitions (i.e., equalities
of the form A ≡ C where A is atomic) such that every atomic concept occurs at
most once as a left-hand side. We will first comment briefly on the complexity of

92 F. Baader, W. Nutt

reasoning w.r.t. acyclic terminologies, and then consider in more detail reasoning
w.r.t. cyclic terminologies.

2.3.3.1 Acyclic terminologies

As shown in Section 2.2.4, reasoning w.r.t. acyclic terminologies can be reduced to
reasoning without terminologies by first expanding the TBox, and then replacing
name symbols by their definitions in the terminology. Unfortunately, since the ex-
panded TBox may be exponentially larger than the original one [Nebel, 1990b], this
increases the complexity of reasoning. Nebel [1990b] also shows that this complex-
ity can, in general, not be avoided: for the language FL0, subsumption between
concept descriptions can be tested in polynomial time (see Section 2.3.1), whereas
subsumption w.r.t. acyclic terminologies is conp-complete (see also Section 2.3.3.2
below).

For more expressive languages, the presence of acyclic TBoxes may or may not
increase the complexity of the subsumption problem. For example, subsumption
of concept descriptions in the language ALC is PSpace-complete, and so is sub-
sumption w.r.t. acyclic terminologies [Lutz, 1999a]. Of course, in order to obtain
a PSpace-algorithm for subsumption in ALC w.r.t. acyclic TBoxes, one cannot
first expand the TBox completely since this might need exponential space. The
main idea is that one uses a tableau-based algorithm like the one described in Sec-
tion 2.3.2, with the difference that it receives concept descriptions containing name
symbols as input. Expansion is then done on demand: if the tableau-based algo-
rithm encounters an assertion of the form A(x), where A is a name occurring on the
left-hand side of a definition A ≡ C in the TBox, then it adds the assertion C(x).
However, it does not further expand C at this stage. It is not hard to show that this
really yields a PSpace-algorithm for satisfiability (and thus also for subsumption)
of concepts w.r.t. acyclic TBoxes in ALC [Lutz, 1999a].

There are, however, extensions of ALC for which this technique no longer works.
One such example is the language ALCF , which extends ALC by functional roles as
well as agreements and disagreements on chains of functional roles (see Section 2.4
below). Satisfiability of concepts is PSpace-complete for this language [Hollunder
and Nutt, 1990], but satisfiability of concepts w.r.t. acyclic terminologies is NExp-
Time-complete [Lutz, 1999a].

2.3.3.2 Cyclic terminologies

For cyclic terminologies, expansion is no longer possible since it would not ter-
minate. If we use descriptive semantics, then cyclic terminologies are a special
case of terminologies with general inclusion axioms. Thus, the tableau-based algo-
rithm for handling general inclusion axioms introduced in Subsection 2.3.2.4 can
also be used for cyclic ALCN -TBoxes with descriptive semantics. For cyclic ALC-

Basic Description Logics 93

TBoxes with fixpoint semantics, the connection between Description Logics and
propositional modal logics turns out to be useful. In fact, syntactically monotone
ALC-TBoxes with least or greatest fixpoint semantics can be expressed within the
propositional µ-calculus, which is an extension of the propositional multimodal logic
Km by fixpoint operators (see [Schild, 1994; De Giacomo and Lenzerini, 1994b;
1997] and Chapter 5 for details). Since reasoning w.r.t. general inclusion axioms
in ALC and reasoning in the propositional µ-calculus are both ExpTime-complete,
these reductions yield an ExpTime-upper bound for reasoning w.r.t. cyclic termi-
nologies in sublanguages of ALC.

For less expressive DLs, more efficient algorithms can, however, be obtained with
the help of techniques based on finite automata. Following [Baader, 1996b], we will
sketch these techniques for the small language FL0. The results can, however, be
extended to the language ALN [Küsters, 1998]. We will develop the results for
FL0 in two steps, starting with an alternative characterization of subsumption be-
tween FL0-concept descriptions, and then extending this characterization to cyclic
TBoxes with greatest fixpoint semantics. Baader [1996b] also considers cyclic FL0-
TBoxes with descriptive and with least fixpoint semantics. For these semantics, the
characterization of subsumption is more involved; in particular, the characterization
of subsumption w.r.t. descriptive semantics depends on finite automata working on
infinite words, so-called Büchi automata. Acyclic TBoxes can be seen as a special
case of cyclic TBoxes, where all three types of semantics coincide.

In Subsection 2.3.1, the equivalence (∀R.C)u(∀R.D) ≡ ∀R.(CuD) was used as a
rewrite rule from left to right in order to compute the structural subsumption normal
form of FL0-concept descriptions. If we use this rule in the opposite direction, we
obtain a different normal form, which we call concept-centered normal form since it
groups the concept description w.r.t. concept names (and not w.r.t. role names, as
the structural subsumption normal form does). Using this rule, any FL0-concept
description can be transformed into an equivalent description that is a conjunction
of descriptions of the form ∀R1. · · · ∀Rm.A for m ≥ 0 (not necessarily distinct)
role names R1, . . . , Rm and a concept name A. We abbreviate ∀R1. · · · ∀Rm.A by
∀R1 · · ·Rm.A, where R1 · · ·Rm is viewed as a word over the alphabet Σ of all role
names. In addition, instead of ∀w1.A u · · · u ∀w`.A we write ∀L.A where L =
{w1, . . . , w`} is a finite set of words over Σ. The term ∀∅.A is considered to be
equivalent to the top concept >, which means that it can be added to a conjunction
without changing the meaning of the concept. Using these abbreviations, any pair
of FL0-concept descriptions C,D containing the concept names A1, . . . , Ak can be
rewritten as

C ≡ ∀U1.A1 u · · · u ∀Uk.Ak and D ≡ ∀V1.A1 u · · · u ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This normal

94 F. Baader, W. Nutt

A ≡ ∀R.A u ∀S.C
B ≡ ∀R.∀S.C
C ≡ P u ∀S.C

SR

A PC

B

S ε

RS

Fig. 2.7. A TBox and the corresponding automaton.

form provides us with the following characterization of subsumption of FL0-concept
descriptions [Baader and Narendran, 1998]:

C v D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the concept-based normal forms is polynomial in the size of the
original descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in
polynomial time, this yields a polynomial-time decision procedure for subsumption
in FL0. In fact, as shown in [Baader et al., 1998a], the structural subsumption
algorithm for FL0 can be seen as a special implementation of these inclusion tests.

This characterization of subsumption via inclusion of finite sets of words can
be extended to cyclic TBoxes with greatest fixpoint semantics as follows. A given
TBox T can be translated into a finite automaton1 AT whose states are the concept
names occurring in T and whose transitions are induced by the value restrictions
occurring in T (see Figure 2.7 for an example and [Baader, 1996b] for the formal
definition).

For a name symbol A and a base symbol P in T , the language LAT (A,P) is the set
of all words labeling paths in AT from A to P . The languages LAT (A,P) represent
all the value restrictions that must be satisfied by instances of the concept A. With
this intuition in mind, the following characterization of subsumption w.r.t. cyclic
FL0 TBoxes with greatest fixpoint semantics should not be surprising:

A vT B iff LAT (A,P) ⊇ LAT (B,P) for all base symbols P .

In the example of Fig. 2.7, we have LAT (A,P) = R∗SS∗ ⊃ RSS∗ = LAT (B, P),
and thus A vT B, but not B vT A.

Obviously, the languages LAT (A,P) are regular, and any regular language can
be obtained as such a language. Since inclusion of regular languages is a PSpace-
complete problem [Garey and Johnson, 1979], this shows that subsumption w.r.t.
cyclic FL0-TBoxes with greatest fixpoint semantics is PSpace-complete [Baader,
1 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be labeled

by a word over Σ rather than a letter of Σ.

Basic Description Logics 95

1996b]. For an acyclic terminology T , the automaton AT is acyclic as well. Since
inclusion of languages accepted by acyclic finite automata is conp-complete, this
proves Nebel’s result that subsumption w.r.t. acyclic FL0-TBoxes is conp-complete
[Nebel, 1990b].

2.4 Language extensions

In Section 2.2 we have introduced the language ALCN as a prototypical Descrip-
tion Logic. For many applications, the expressive power of ALCN is not sufficient.
For this reason, various other language constructors have been introduced in the
literature and are employed by systems. Roughly, these language extensions can
be put into two categories, which (for lack of a better name) we will call “classi-
cal” and “nonclassical” extensions. Intuitively, a classical extension is one whose
semantics can easily be defined within the model-theoretic framework introduced
in Section 2.2, whereas defining the semantics of a nonclassical constructor is more
problematic and requires an extension of the model-theoretic framework (such as
the semantics of the epistemic operator K introduced in Section 2.2.5). In this
section, we briefly introduce the most important classical extensions of Description
Logics. Inference procedures for such expressive DLs are discussed in Chapter 5.
Nonclassical extensions are the subject of Chapter 6.

In addition to constructors that can be used to build complex roles, we will
introduce more expressive number restrictions, and constructors that allow one to
express relationships between the role-filler sets of different (complex) roles.

2.4.1 Role constructors

Since roles are interpreted as binary relations, it is quite natural to employ the usual
operations on binary relations (such as Boolean operators, composition, inverse,
and transitive closure) as role forming constructors. Syntax and semantics of these
constructors can be defined as follows:

Definition 2.28 (Role constructors) Every role name is a role description
(atomic role), and if R, S are role descriptions, then R u S (intersection), R t S
(union), ¬R (complement), R ◦ S (composition), R+ (transitive closure), R− (in-
verse) are also role descriptions.

A given interpretation I is extended to (complex) role descriptions as follows:

(i) (R u S)I = RI ∩ SI , (R t S)I = RI ∪ SI , (¬R)I = ∆I ×∆I \RI ;
(ii) (R ◦ S)I = {(a, c) ∈ ∆I ×∆I | ∃b. (a, b) ∈ RI ∧ (b, c) ∈ SI};
(iii) (R+)I =

⋃

i≥1(R
I)i, i.e., (R+)I is the transitive closure of (RI);

96 F. Baader, W. Nutt

(iv) (R−)I = {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}.

For example, the union of the roles hasSon and hasDaughter can be used to
define the role hasChild, and the transitive closure of hasChild expresses the role
hasOffspring. The inverse of hasChild yields the role hasParent.

The complexity of satisfiability and subsumption of concepts in the language
ALCNu (also called ALCNR in the literature), which extends ALCN by inter-
section of roles, has been investigated in [Donini et al., 1997a]. It is shown that
these problems are still PSpace-complete, provided that the numbers occurring
in number restrictions are written in base 1 representation (where the size of the
representation coincides with the number represented). Tobies [2001b] shows that
this result also hold for non-unary coding of numbers. Decidability of the exten-
sion of ALCN by the three Boolean operators and the inverse operator is an im-
mediate consequence of the fact that concepts of the extended language can be
expressed in C2, i.e., first-order predicate logic with two variables and counting
quantifiers, which is known to be decidable in NExpTime [Grädel et al., 1997b;
Pacholski et al., 1997]. Lutz and Sattler [2000a] show that ALC extended by role
complement is ExpTime-complete, whereas ALC extended by role intersection and
(atomic) role complement is NExpTime-complete.

In [Baader, 1991], the DL ALCtrans , which extends ALC by transitive-closure,
composition, and union of roles, has been introduced, and subsumption and satis-
fiability of ALCtrans -concepts has been shown to be decidable. Schild’s observation
[Schild, 1991] that ALCtrans is just a syntactic variant of propositional dynamic logic
(PDL) [Fischer and Ladner, 1979] yields the exact complexity of subsumption and
satisfiability in ALCtrans : they are ExpTime-complete [Fischer and Ladner, 1979;
Pratt, 1979; 1980]. The extension of ALCtrans by the inverse constructor corre-
sponds to converse PDL [Fischer and Ladner, 1979], which can also be shown to be
decidable in deterministic exponential time [Vardi, 1985]. Whereas this extension
of ALCtrans does not change the properties of the obtained DL in a significant way,
things become more complex if both number restrictions and the inverse of roles
are added to ALCtrans . Whereas ALCtrans and ALCtrans with inverse still have the
finite model property, ALCtrans extended by inverse and number restrictions does
not. Indeed, it is easy to see that the concept

¬A u ∃R−.A u (6 1R) u ∀(R−)+.(∃R−.A u (6 1R))

is satisfiable in an infinite interpretation, but not in a finite one. Nevertheless,
this DL still has an ExpTime-complete subsumption and satisfiability problem. In
fact, in [De Giacomo, 1995], number restrictions, the inverse of roles, and Boolean
operators on roles are added to ALCtrans , and ExpTime-decidability is shown by a
rather ingenious reduction to the decision problem for ALCtrans . It should be noted,

Basic Description Logics 97

however, that in this work only atomic roles and their inverse may occur in number
restrictions, and that the complement of roles is built with respect to a fixed role
any, which must contain all other roles, but need not be interpreted as the universal
role (i.e., ∆I ×∆I). As we shall see below, allowing for more complex roles inside
number restrictions may easily cause undecidability.

2.4.2 Expressive number restrictions

There are three different ways in which the expressive power of number restrictions
can be enhanced.

First, one can consider so-called qualified number restrictions, where the number
restrictions are concerned with role-fillers belonging to a certain concept. For ex-
ample, given the role hasChild, the simple number restrictions introduced above can
only state that the number of all children is within certain limits, such as in the
concept > 2 hasChild u 6 5 hasChild. Qualified number restrictions can also express
that there are at least 2 sons and at most 5 daughters:

> 2 hasChild.Male u6 5 hasChild.Female.

Adding qualified number restrictions to ALC leaves the important inference prob-
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes)
decidable: the worst-case complexity is still PSpace-complete. Membership in
PSpace was first shown for the case where numbers occurring in number re-
strictions are written in base 1 representation [Hollunder and Baader, 1991a;
Hollunder, 1996]. More recently, this has been proved even for the case of binary
(or, equivalently, decimal) representation of numbers [Tobies, 1999c; 2001b]. The
language stays decidable if general sets of inclusion axioms are allowed [Buchheit et
al., 1993a].

Second, one can allow for complex role expressions inside number restrictions.
As already mentioned above, allowing for the three Boolean operators and the in-
verse operator in number restrictions of ALCN leaves us within C2, which is known
to be decidable. In [Baader and Sattler, 1996b; 1999], languages that allow for
composition of roles in number restrictions have been considered.1 The extension
of ALC by number restrictions involving composition has a decidable satisfiability
and subsumption problem. On the other hand, if either number restrictions involv-
ing composition, union and inverse, or number restrictions involving composition
and intersection are added, then satisfiability and subsumption become undecidable
[Baader and Sattler, 1996b; 1999]. For ALCtrans , the extension by number restric-
tions involving composition is already undecidable [Baader and Sattler, 1999].

Third, one can replace the explicit numbers n in number restrictions by variables α
1 Note that composition cannot be expressed within C2.

98 F. Baader, W. Nutt

that stand for arbitrary nonnegative integers [Baader and Sattler, 1996a; 1999].
This allows one, for example, to define the concept of all persons having at least
as many daughters as sons, without explicitly saying how many sons and daughters
the person has:

Person u> α hasDaughter u6α hasSon.

The expressive power of this language can further be increased by introducing ex-
plicit quantification of the numeric variables. For example, it is important to know
whether the numeric variables are introduced before or after a value restriction.
This is illustrated by the following concept

Person u ↓α.(∀hasChild.(>α hasChild u6α hasChild)),

in which introducing the numerical variable before the universal value restriction
makes sure that all the children of the person have the same number of children.
Here, ↓α stands for an existential quantification of α. Universal quantification of
numerical variables comes in via negation. In [Baader and Sattler, 1996a; 1999] it
is shown that ALCN extended by such symbolic number restrictions with universal
and existential quantification of numerical variables has an undecidable satisfiability
and subsumption problem. If one restricts this language to existential quantification
of numerical variables and negation on atomic concepts, then satisfiability becomes
decidable, but subsumption remains undecidable.

2.4.3 Role-value-maps

Role-value-maps are a family of very expressive concept constructors, which were,
however, available in the original Kl-One-system. They allow one to relate the sets
of role fillers of role chains.

Definition 2.29 (Role-value-maps) A role chain is a composition R1 ◦ · · · ◦ Rn

of role names. If R, S are role chains, then R ⊆ S and R = S are concepts (role-
value-maps). The former is called a containment role-value-map, while the latter is
called an equality role-value-map.

A given interpretation I is extended to role-value-maps as follows:

(i) (R ⊆ S)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI → (a, b) ∈ SI},
(ii) (R = S)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI ↔ (a, b) ∈ SI}.

For example, the concept

Person u (hasChild ◦ hasFriend ⊆ knows)

Basic Description Logics 99

describes the persons knowing all the friends of their children, and

Person u (marriedTo ◦ likesToEat = likesToEat)

describes persons having the same favorite foods as their spouse.
Unfortunately, in the presence of role-value-maps, the subsumption problem is

undecidable, even if the language allows only for conjunction and value restriction
as additional constructors [Schmidt-Schauß, 1989] (see also Chapter 3).

To avoid this problem, one may restrict the attention to role chains of functional
roles, also called attributes or features in the literature. An interpretation I in-
terprets the role R as a functional role iff {(a, b), (a, c)} ⊆ RI implies b = c. In
the following, we assume that the set of role names is partitioned into the set of
functional roles and the set of ordinary roles. Any interpretation must interpret the
functional roles as such. Usually, we write functional roles with small letters f, g,
possibly with index.

Definition 2.30 (Agreements) If f , g are role chains of functional roles, then
f .= g and f 6 .= g are concepts (agreement and disagreement).

A given interpretation I is extended to agreements and disagreements as follows:

(i) (f .= g)I = {a ∈ ∆I | ∃b. (a, b) ∈ fI ∧ (a, b) ∈ gI},
(ii) (f 6 .= g)I = {a ∈ ∆I | ∃b1, b2. b1 6= b2 ∧ (a, b1) ∈ fI ∧ (a, b2) ∈ gI}.

In the literature, the agreement constructor is sometimes also called the same-as
constructor. Note that, since f , g are role chains between functional roles, there
can be at most one role filler for a w.r.t. the respective role chain. Also note that
the semantics of agreements and disagreements requires these role fillers to exist
(and be equal or distinct) for a to belong to the concept.

For example, hasMother, hasFather, and hasLastName with their usual interpreta-
tion are functional roles, whereas hasParent and hasChild are not. The concept

Person u (hasLastName .= hasMother ◦ hasLastName)
u (hasLastName 6 .= hasFather ◦ hasLastName)

describes persons whose last name coincides with the last name of their mother, but
not with the last name of their father.

The restriction to functional roles makes reasoning in ALC extended by agree-
ments and disagreements decidable [Hollunder and Nutt, 1990]. A structural sub-
sumption algorithm for the language provided by the Classic-system, which in-
cludes the same-as constructor, can be found in [Borgida and Patel-Schneider, 1994].
However, if general inclusion axioms (or transitive closure of functional roles or
cyclic definitions) are allowed, then agreements and disagreements between chains
of functional roles again cause subsumption to become undecidable [Nebel, 1991;

100 F. Baader, W. Nutt

Baader et al., 1993]. Additional types of role interaction constructors similar to
agreements and role-value-maps are investigated in [Hanschke, 1992].

Acknowledgement

We would like to thank Maarten de Rijke for his pointers to the literature on Beth
definability in modal logics.

