INFO216: Knowledge Graphs

Andreas L. Opdahl Andreas.Opdahl@uib.no

Session S14: OWL DL

-Themes:

- description logic
- decision problems
- OWL DL
- Manchester OWL-syntax

Readings

- Forum links (cursory):
- http://www.w3.org/TR/owl2-primer/
- show: Turtle and Manchester syntax
- hide: other syntaxes
- Description Logic Handbook:
- Chapter 1: Nardi \& Brachman:

Introduction to Description Logics

- Chapter 2: Baader \& Nutt:

Formal Description Logics (gets hard)

Description Logic (DL)

Description logics

- Description Logic (DL)
- a simple fragment of predicate logic
- ...or, rather, a family of such fragments
- not very expressive ("uttrykkskraftig")
- but (can have) good decision problems, i.e.,
- it answers decision problems (rather) quickly
- Suitable for describing concepts ("begreper")
- formal basis for OWL DL
- can be used to:
- describe concepts and their roles ("Tbox")
- describe individuals and their roles ("ABox")

Relationship to other logics

- Proposition logics are about statements (propositions):
"Martha is a Woman" \Leftarrow "Martha is Human" \wedge "Martha is Female"
- (First order) predicate logics are about predicates and objects:
$-\forall \mathrm{x}$. (Woman (x) \Leftrightarrow Human (x) \wedge Female (x))
- Description logics are about concepts:
- Woman \doteq Human \sqcap Female
- ...and also about roles and individuals
- There are many other logic systems:
- modal logics: necessarily \square, possibly \diamond
- temporal logics: always \square, sometimes \diamond, next time \circ

Definition of concepts ("begreper")

- Woman \doteq Human \sqcap Female
- Man = Human $\sqcap \neg$ Woman
- Parent \doteq Mother \sqcup Father
- concepts: Human, Female, Woman...
- definition: \doteq
- conjunction (and): \sqcap
- disjunction (or): ப
- negation (not): ᄀ
- nested expressions: ()
- Childless \doteq..using Human and Parent..

Definition of concepts ("begreper")

- Woman \doteq Human \sqcap Female
- Man = Human $\sqcap \neg$ Woman
- Parent \doteq Mother \sqcup Father
- concepts: Human, Female, Woman...
- definition: \doteq
- conjuction (and): \sqcap
- disjunction (or): ப
- negation (not): ᄀ
- nested expressions: ()
- Childless \doteq Human $\sqcap \neg$ Parent

Types of concepts ("begreper")

- Woman \doteq Human \sqcap Female
- Man \doteq Human $\sqcap \neg$ Woman
- Parent \doteq Mother \sqcup Father
- named (or atomic) concepts:

Human, Female, Woman...

- complex concepts / concept expressions:
\neg Woman, Human \sqcap Female...
- (named) basic concepts: Human, Female...
- only used on the r.h.s. of definitions
- (named) defined concepts: Woman, Man...
- acyclicity and
- unequivocality, i.e., each named concept used on the l.h.s. of only a single definition

Basic and defined concepts and roles

- Named (or atomic) basic concepts are given
- correspond to OWL-NamedClasses that are not composed from other classes/properties/...
- Named (or atomic) defined concepts
- correspond to OWL-NamedClasses that are composed from other classes
- defined by concept expressions
- name appears on the left side of an \doteq definition
- concept expression appears on the right side
- ...similar distinction between basic and defined roles later

Roles

- Mother \doteq Female $\sqcap \exists$ hasChild. \top
- Bachelor \doteq Male $\sqcap \neg \exists$ hasSpouse. ${ }^{\top}$
- Uncle \doteq Male $\sqcap \exists$ hasSibling. Parent
-roles: hasChild, hasSibling...
- universal concept ("top"): T
-existential restriction: \exists
- Grandparent \doteq..using Human, hasChild, Parent..
- Grandparent \doteq..using only Human, hasChild..
- Uncle \doteq..using Male, hasSibling, hasChild..

Roles

- Mother \doteq Female $\sqcap \exists$ hasChild. \top
- Bachelor \doteq Male $\sqcap \neg \exists$ hasSpouse. ${ }^{\top}$
- Uncle \doteq Male $\sqcap \exists$ hasSibling. Parent
-roles: hasChild, hasSibling...
- universal concept ("top"): T
-existential restriction: \exists
- Grandparent \doteq Human $\sqcap \exists$ hasChild.Parent
- Grandparent \doteq..using only Human, hasChild..
- Uncle \doteq..using Male, hasSibling, hasChild..

Roles

- Mother \doteq Female $\sqcap \exists$ hasChild. \top
- Bachelor \doteq Male $\sqcap \neg \exists$ hasSpouse. ${ }^{\top}$
- Uncle \doteq Male $\sqcap \exists$ hasSibling. Parent
-roles: hasChild, hasSibling...
- universal concept ("top"): T
-existential restriction: \exists
- Grandparent \doteq Human $\sqcap \exists$ hasChild.Parent
- Grandparent \doteq Human \sqcap \exists hasChild. \exists hasChild. \top
- Uncle \doteq....using Male, hasSibling, hasChild....

Roles

- Mother \doteq Female $\sqcap \exists$ hasChild. \top
- Bachelor \doteq Male $\sqcap \neg \exists$ hasSpouse. ${ }^{\top}$
- Uncle \doteq Male $\sqcap \exists$ hasSibling. Parent
-roles: hasChild, hasSibling...
- universal concept ("top"): T
-existential restriction: ヨ
- Grandparent \doteq Human $\sqcap \exists$ hasChild.Parent
- Grandparent \doteq Human \sqcap \exists hasChild. \exists hasChild. \top
- Uncle \doteq Male $\sqcap \exists$ hasSibling. \exists hasChild. ${ }^{\top}$

Null concept

- Male \square Female $\sqsubseteq \perp$
- null concept ("bottom"): \perp
- subsumption (sub concept): \sqsubseteq
- equivalence:
- = is used for definitions (or just \equiv)
- 三 are used for equivalence axioms- 〔 are used for subsumption axioms
- or: containment / specialisation axioms
- Note the use of . . $\sqsubseteq \perp$ ("subsumption of bottom")
- to say that something is not the case

Null concept

- Male \square Female $\sqsubseteq \perp$
- null concept ("bottom"): \perp
- subsumption (sub concept): \sqsubseteq
- equivalence:
- \doteq is used for definitions (or just \equiv)
- \equiv are used for equivalence axioms
- $\preceq ~ a r e ~ u s e d ~ f o r ~ s u b s u m p t i o n ~ a x i o m s ~$
- or: containment / specialisation axioms
- Note the use of . . $\sqsubseteq \perp$ ("subsumption of bottom")
- to say that something is not the case
- This was our first proper axiom!
- so far we have just defined concepts
- we have not used them in proper axioms

More uses of roles

- HappyFather \doteq Father \sqcap \forall hasChild. HappyPerson
- universal restriction: \forall
- MotherOfOne \doteq Mother $\sqcap=1$ hasChild. ${ }^{\top}$
- Polygamist $\doteq \geq 3$ hasSpouse. ${ }^{\top}$

$$
\text { - number restrictions: }=, \geq, \leq
$$

- Narsissist $\doteq \exists$ hasLoveFor.Self
- self references: Self
- MassMurderer \doteq = ...using hasKilled, Human...

More uses of roles

- HappyFather \doteq Father \sqcap \forall hasChild. HappyPerson
- universal restriction: \forall
- MotherOfOne \doteq Mother $\sqcap=1$ hasChild. ${ }^{\top}$
- Polygamist $\doteq \geq 3$ hasSpouse. ${ }^{\top}$

$$
\text { - number restrictions: }=, \geq, \leq
$$

- Narsissist $\doteq \exists$ hasLoveFor.Self
- self references: Self
- MassMurderer $\doteq \geq 4$ hasKilled.Human

Inverse and transitive roles

- Child \doteq Human $\sqcap \exists$ hasChild
- hasParent \doteq hasChild-
- hasSibling \doteq hasSibling
- BlueBlood $\doteq \forall$ hasParent*.BlueBlood
- inverse role: hasChild-
- symmetric role: hasSibling-
-transitive role: hasParent*
- Niece \doteq..Woman, hasChild, hasSibling..

Inverse and transitive roles

- Child \doteq Human \sqcap ヨasChildㄱ‥ \top
- hasParent \doteq hasChild-
- hasSibling \doteq hasSibling
- BlueBlood $\doteq \forall$ hasParent*.BlueBlood

> - inverse role: hasChild-
> -symmetric role: hasSibling
> -transitive role: hasParent*

- Niece \doteq Woman $\sqcap \exists$ hasChild‥hasSibling. \top
- We just started to define roles!
- until now, we have only defined concepts

Composite roles

- Similar to composite concepts, e.g.:
-hasUncle \doteq hasParent 0 hasBrother
-hasLovedChild \doteq hasChild \sqcap hasLoveFor
-hasBrother \doteq (hasSibling | Male)
- Mostly not supported by reasoning engines
- they have "bad decision problems"
- i.e., they compute slowly or intractably
- ...with some exceptions
- hasDaughter \doteq..using hasChild, Female..

Composite roles

- Similar to composite concepts, e.g.:
-hasUncle \doteq hasParent 0 hasBrother
-hasLovedChild \doteq hasChild \sqcap hasLoveFor
-hasBrother \doteq (hasSibling | Male)
- Mostly not supported by reasoning engines
- they have "bad decision problems"
- meaning that they compute slowly or intractably
- ...with some exceptions
- hasDaughter \doteq (hasChild | Female)

TBox

- Terminology box (TBox):
- a collection of axioms and definitions
- axioms are equivalences or subsumptions:
- equivalence axioms (三):
- composite concept (role) expressions on both sides
- subsumption axioms (ㄷ):
- composite concept (role) expressions on both sides
- terminology boxes can also contain definitions:
- definition axioms $(\dot{=}$):
- defined / named concept (role) on the I.h.s.
- composite concept (role) expression on the r.h.s
- make it easier to write other axioms

Acyclic, definitional TBox

Woman \equiv Person \sqcap Female
Man \equiv Person $\sqcap \neg$ Woman
Mother \equiv Woman $\sqcap \exists$ hasChild.Person
Father \equiv Man $\sqcap \exists$ hasChild.Person
Parent \equiv Father \sqcup Mother
Grandmother \equiv Mother $\sqcap \exists$ hasChild.Parent
MotherWithManyChildren \equiv Mother $\sqcap \geqslant 3$ hasChild
MotherWithoutDaughter \equiv Mother $\sqcap \forall$ hasChild. \neg Woman
Wife \equiv Woman $\sqcap \exists$ hasHusband.Man

TBox

- Acyclic TBoxes:
- contains only definitions
- subsumption axioms can (sometimes) be removed:
$-\mathrm{T} \sqsubseteq \mathrm{C}$ is transformed into $\mathrm{T} \doteq \overline{\mathrm{T}} \sqcap \mathrm{C}$
- Example:

Male \sqsubseteq Human is transformed into

$$
\text { Male } \doteq \text { Maleness } \sqcap \text { Human }
$$

- when only a single l.h.s. term
- Expanded concepts (or roles)
- every defined concept (or role) can be expanded into an expression of only named basic concepts (or roles)
- defined only in terms of named basic concepts (and roles)
- expanded, definitional TBox

Expanded definitional TBox

$$
\begin{aligned}
& \text { Woman } \equiv \text { Person } \sqcap \text { Female } \\
& \text { Man } \equiv \text { Person } \sqcap \neg \text { (Person } \sqcap \text { Female) } \\
& \text { Mother } \equiv \text { (Person } \sqcap \text { Female) } \sqcap \exists \text { hasChild.Person } \\
& \text { Father } \equiv(\text { Person } \sqcap \neg(\text { Person } \sqcap \text { Female })) \sqcap \exists \text { hasChild.Person } \\
& \text { Parent } \equiv((\text { Person } \sqcap \neg(\text { Person } \sqcap \text { Female })) \sqcap \exists \text { hasChild.Person }) \\
& \sqcup((\text { Person } \sqcap \text { Female }) \sqcap \exists \text { hasChild.Person }) \\
& \text { Grandmother } \equiv \text { ((Person } \sqcap \text { Female) } \sqcap \exists \text { hasChild.Person) } \\
& \sqcap \exists \text { hasChild.Person) } \\
& \sqcup((\text { Person } \sqcap \text { Female }) \\
& \sqcap \exists \text { hasChild.Person)) } \\
& \text { MotherWithManyChildren } \equiv((\text { Person } \sqcap \text { Female }) \sqcap \exists \text { hasChild.Person }) ~ \sqcap \geqslant 3 \text { hasChild } \\
& \text { MotherWithoutDaughter } \equiv((\text { Person } \sqcap \text { Female }) ~ \sqcap \exists \text { hasChild.Person }) \\
& \sqcap \forall \text { hasChild. }(\neg(\text { Person } \sqcap \text { Female })) \\
& \begin{aligned}
& \text { Wife } \equiv\text { (Person } \sqcap \text { Female }) \\
& \\
& \sqcap \exists \text { hasHusband. }
\end{aligned}
\end{aligned}
$$

Statements about individuals

- So far axioms about concepts and roles (TBox)
- Also two types of axioms about individuals (ABox):
- class assertion (using a concept):

Märtha : Female \square Royal

- role assertion (using a role):
<Märtha, EmmaTallulah> : hasChild
<Märtha, HaakonMagnus> : hasBrother
- Axioms about concepts/roles and assertion axioms about individuals/roles are used to create knowledge bases:
- concepts, roles in the TBox (aka "the tags")
- individuals, roles in the ABox ("the tagged data")

Syntaxes differ a bit...

- So far axioms about concepts and roles (TBox)
- Also two types of axioms about individuals (ABox):
- class assertion (using a concept):

Female (Märtha), (Female 7 Royal) (Märtha)

- role assertion (using a role):
hasChild(Märtha, EmmaTallulah)
hasBrother (Märtha, HaakonMagnus)
- Axioms about concepts/roles and assertion axioms about individuals/roles are used to create knowledge bases:
- concepts, roles in the TBox (aka "the tags")
- individuals, roles in the ABox ("the tagged data")

Summary of axioms

- Terminology axioms (in the TBox):
- subsumptions: $\quad \mathrm{C} \sqsubseteq \mathrm{D}$
C and D are expressions, A is a defined concept!
- equivalences: $\quad C \equiv D$ corresponds to: $\mathrm{C} \sqsubseteq \mathrm{D}, \mathrm{D} \sqsubseteq \mathrm{C}$
- definitions:
$A \doteq C$
- Individual assertion axioms (in the ABox):
- class assertions: a:C
a and b are individuals. R is a role!
- role assertions: <a, b>: R
- A knowledge base $\mathbb{K}=(\mathcal{T}, \mathcal{A})$ consists of
- TBox: \mathcal{T} and
ABox: \mathcal{A}

Decision Problems

Reasoning over knowledge bases

- What more can we do with ontologies?
- For example:
- a security ontology that describes an organisation and its computer systems as concepts, roles and individuals
- can answer competency questions, e.g.:
- are all the security levels subclasses of one another?
- what is the highest security level of a temporary?
- what is the necessary security level of a component?
- which employees have access to critical data?
- for which security roles is an employee qualified?
- which individuals are suspicious persons?
- DL offers a clear and compact way or representing and reasoning about questions such as these!

Decision problems

- A computational problem with a yes/no answer, e.g.
- is C subsumed by $D(K \vDash C \sqsubseteq D)$?
- are C and D consistent $(\mathbb{K} \vDash a:(C \sqcap D)$)
- does a belong to $C(\mathbb{K} \vDash a: C)$?
- is a R-related to $b(\mathbb{K} \vDash<\mathrm{a}, \mathrm{b}>: \mathrm{R})$?
C and D are classes, a and b are individuals. R is a role!
- Decidability ("bestembarhet"):
- we can always calculate the yes/no answer in finite time
- Semi-decidability ("semibestembarhet"):
- we can always calculate a yes-answer in finite time, ...but not always a no-answer
- Undecidability ("ubestembarhet"):
- we cannot always calculate the answer in finite time

Decision problems for concepts

- There are four basic decision problems for concepts:
- consistency: whether there is an individual a so that

$$
\begin{aligned}
& \mathcal{T} \vDash a: C, \\
& \mathcal{T} \vDash C \sqsubseteq \perp
\end{aligned}
$$

- subsumption: $\mathcal{T} \vDash \mathrm{C} \sqsubseteq \mathrm{D}$,

$$
\mathcal{T} \vDash \mathrm{C} \sqcap \neg \mathrm{D} \sqsubseteq \perp
$$

- equivalence: $\boldsymbol{T} \vDash \mathrm{C} \equiv \mathrm{D}$ or $\mathrm{C} \equiv_{\tau} \mathrm{D}$,

$$
T \vDash C \sqsubseteq D, D \sqsubseteq C
$$

- disjunction: $\quad T \vDash C \sqcap D \sqsubseteq \perp$
- All four can be reduced to subsumption or consistency!
- \mathcal{T} can be emptied, by expanding all its concepts

Decision problems for individuals

- Decision problems for individuals and roles:
- instance checking: $\mathcal{A} \vDash \mathrm{a}: \mathrm{C}$,

$$
\vDash \mathcal{A} \sqcap \neg(\mathrm{a}: \mathrm{C})
$$

is individual a member of class/concept \boldsymbol{C} ?

- role checking: $\quad \mathcal{A} \vDash\langle a, b\rangle: R$,

$$
\notin \mathcal{A} \sqcap \neg(\langle a, b\rangle: R)
$$

is individual alaterelated to individual b?

- classifications (not yes/no):
to which classes/concepts does a belong?
all individuals of class/concept C?
- Everything boils down to consistency checking for ABoxes
- ...under certain (rather weak) conditions

Complexity

- Decidability is often necessary
- but not enough
- we also want a decision "in reasonable time"
- different DL-variants have different complexity
- many different complexity classes
- polynomial (P), exponential (EXP)...
- ...in time and space
- Tractable (or feasible) complexity
- acceptable complexity for large knowledge bases
- typically polynomial complexity (P)
- complexity grows $O(n c)$ of problem size n

DL-complexity

- We have presented many DL-notations
- do not use all at the same time!
- that gives high complexity
- which is why we have different OWL Profiles
- Complexity calculator on the net:
- Complexity of reasoning in Description Logics http://www.cs.man.ac.uk/~ezolin/dl/

OWL DL

Relation to OWL

－OWL DL and description logic are closely matched
－everything in OWL DL has a DL－counterpart
－most everything in DL can be expressed in OWL DL
－DL is a family of logic systems：
－some of them correspond to particular OWL profiles
－OWL1 DL：SHOのN（か）
－OWL2 DL：SROのQ（カ）

OWL profiles revisited

- OWL "1" (2002):
- OWL Full - "anything goes"
- OWL DL - fragment of OWL Full,
- formal semantics through description logic
- OWL Lite - simple fragment of OWL DL, not much used
- OWL 2 (2008):
- OWL2 Full - "anything goes"
- OWL2 DL - fragment of OWL2 full, extension of OWL DL
- OWL2 EL - quick reasoning, fragment of OWL2 DL
- OWL2 RL - rule language, fragment of OWL2 DL
- OWL LD - linked data, fragment of OWL2 RL
- OWL2 QL - query language, fragment of OWL2 DL

And there is more...

- A few other constructions
- Formal definitions of
- syntax (rules for valid expressions, reasoning)
- semantics (rules for interpreting expressions)
- Tools and techniques
- Lots of applications

Manchester OWL syntax

Manchester OWL-syntax

- A simple DL notation without special symbols
- used by Protege-OWL to construct classes
- similar to DL syntax
- Class: Woman

EquivalentTo: Human and Female

- Class: Man

EquivalentTo: Human and not Female

- Class: Parent

EquivalentTo: Mother or Father

- Can be used to serialise complete ontologies
- ...we will look mostly at TBox expressions
- http://www.w3.org/TR/owl2-manchester-syntax/

Comparison

- DL:

Male \doteq Human $\sqcap \neg$ Female

- Machester OWL:

Class: Man EquivalentTo: Human and not Female

- TURTLE:
family:Man owl:equivalentClass owl:intersectionOf (family:Human
[a owl:Class; owl:complementOf family:Woman
]
).

Roles in Manchester OWL syntax

- Class: Mother

EquivalentTo:
Female and hasChild some owl:Thing

- Class: Bachelor

EquivalentTo:
Male and not hasSpouse some owl:Thing

- Class: Uncle

EquivalentTo:
Male and hasSibling some Parent
-universal concept (top): owl:Thing
-existential restriction: some

Null concept in Manchester OWL syntax

- Class: <class-name>

EquivalentTo: Male and Female SubClassOf: owl:Nothing

- null concept (bottom): owl:Nothing
- subsumption (subconcept): SubClassOf:
- equivalence: EquivalentTo:
-...used both for definitions and for axioms

More roles in Manchester OWL syntax

- Class: HappyFather

EquivalentTo:
Father and hasChild only Happy

- value restriction: only
- Class: MotherOfOne

EquivalentTo: Mother and hasChild exactly 1

- Class: Bigamist

EquivalentTo: hasSpouse min 2

- number restriction: exactly, min, max
- Class: Narcissist

EquivalentTo: loves some Self

Inverse, symmetric and transitive roles

- Class: Child

EquivalentTo:
Human and inverse hasChild some owl:Thing

- Class: hasParent

EquivalentTo: inverse hasChild

- ObjectProperty: hasSibling

Characteristic: Symmetric

- ObjectProperty: hasAncestor

Characteristic: Transitive

- inverse role: inverse
- symmetric role:

Characteristic: SymmetricProperty
-transitive role:
Characteristic: TransitiveProperty

