Welcome to INFO216: Knowledge Graphs Spring 2023

Andreas L Opdahl <Andreas.Opdahl@uib.no>

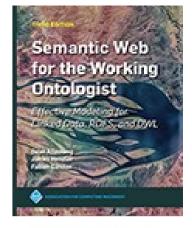
Session 12: Enterprise Knowledge Graphs II

- Themes:
 - Open OGs (\leftarrow S04-S05)
 - Linked Open Data resources / datasets
 - Wikidata, DBpedia, GDELT, EventKG GeoNames, WordNet, BabelNet...
 - Enterprise KGs I (\rightarrow S06)
 - Enterprise KGs II:
 - Google's knowledge graph
 - Amazon's product graphs
 - the News Hunter infrastructure and architecture
 - JSON-LD

INFO216: Knowledge Graphs

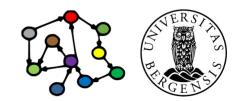
Readings

- Sources (suggested):
 - Blumauer & Nagy (2020): Knowledge Graph Cookbook – Recipes that Work: parts 2 and 4
- Resources in the wiki <<u>http://wiki.uib.no/info216</u>>:
 - Introducing the Knowledge Graph: Things not Strings, Amit Singhal, Google (2012)
 - A reintroduction to our Knowledge Graph and knowledge panels, Danny Sullivan, Google (2020)
 - How Amazon's Product Graph is helping customers find products more easily, Arun Krishnan, Amazon (2018)



THE KNOWLEDGE GRAPH COOKBOOK RECIPES THAT WORK

AND HELMUT NACY



INFO216: Knowledge Graphs

Is anyone really using Knowledge Graphs?

Yes!

INFO216: Knowledge Graphs

Yes!

- But...
 - not quite as in the semantic web vision
 - not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

INFO216: Knowledge Graphs

Yes!

• But...

- not quite as in the semantic web vision
- not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

Many of these ideas are widely adopted too, such as:

- microdata / schema.org
- RDF / SPARQL / ... for semantic data exchange
- graph representations in general

Yes!

- But...
 - not quite as in the semantic web vision
 - not quite as in the LOD vision either
- Knowledge graphs are (additionally) becoming:
 - company internal
 - based on other technologies
 - such as general graph databases
 - not always linked to the LOD cloud

Similar ideas, adapted to new uses and business contexts, using a combination of standard and other technologies

Google's Knowledge Graph

Google's Knowledge Graph

- Google Knowledge Graph (from 2012)
 - "Things, not Strings"
 - seeded from Freebase
 - facts from Wikipedia, Wikidata, CIA World Factbook
 - a growing number of other sources
 - enriched by natural-language parsing (NLP)
 - Google's Knowledge Vault
 - used internally for many purposes
 - visible in Google Search results (Knowledge Panels)
 - question answering in Google Assistant / Home

Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

(c) Andreas L Opdahl, 2023

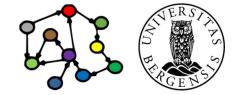


Google's Knowledge Graph

- Coverage:
 - claimed
 - 18 billion facts (18G, norsk: 18 milliarder) about 570 million entities *soon after start*
 - 70 billion facts claimed in (2016)
 - 500 billion facts about five billion entities (2020)
 - ...perhaps 3 times the size of the LOD cloud
 - from English to multiple languages
- Critiques:
 - source attribution, incl. Wikipedia / Wikidata

Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

(c) Andreas L Opdahl, 2023



Google's Knowledge Vault Project

- Google Knowledge Vault
 - extends the Knowledge Graph
 - covers resources not from open semantic datasets
 - facts extracted from the whole web
 - NLP of text documents
 - HTML trees and tables
 - human annotated pages (e.g., schema.org)
 - probabilistic reasoning
 - graph-based priors
 - knowledge fusion

Caution: The public documentation is limited, so this is compiled based on presentations, technical notes, forums etc.

(c) Andreas L Opdahl, 2023

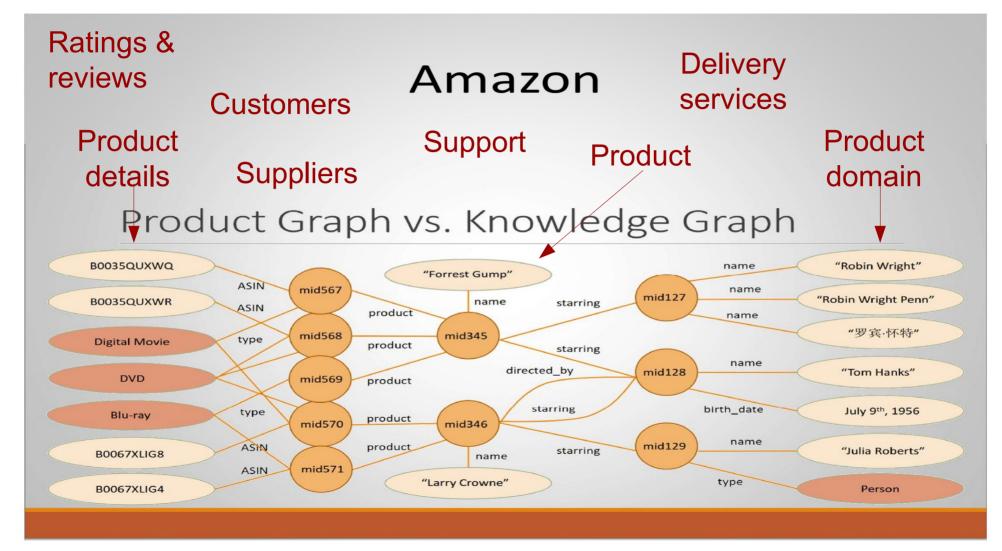
Amazon's Knowledge Graph

INFO216: Knowledge Graphs

Amazon's ambition (\leftarrow S01)

- Let shoppers find the best products that fit their needs
 - allow greater variation in search terms
 - allow complex queries
- Ambition: to structure all of the world's information as it relates to everything available on Amazon
- Describe every product on Amazon
 - both products and non-products
 - both concrete and abstract concepts
 - link related entities, both internal and external
- Enhanced customer experience
 - visit Amazon to see what's new or interesting
 - discover ways to simplify and enrich their lives

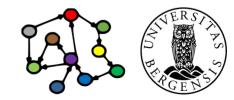
INFO216: Knowledge Graphs



Frank van Harmelen (2018): Keynote at CAiSE'18

Challenges

- Ingest product-related information from Amazon's detail pages and from the Internet at large
 - product information is largely unstructured
 - trustworthiness of sources
- Machine learning techniques for
 - knowledge extraction, linkage and cleaning
 - distantly supervised learning
 - train on more structured subset of data
 - run on larger unstructured data space
 - open information extraction
 - graph mining techniques to identify interesting hidden patterns (buying product-X → buying product-Y)



INFO216: Knowledge Graphs

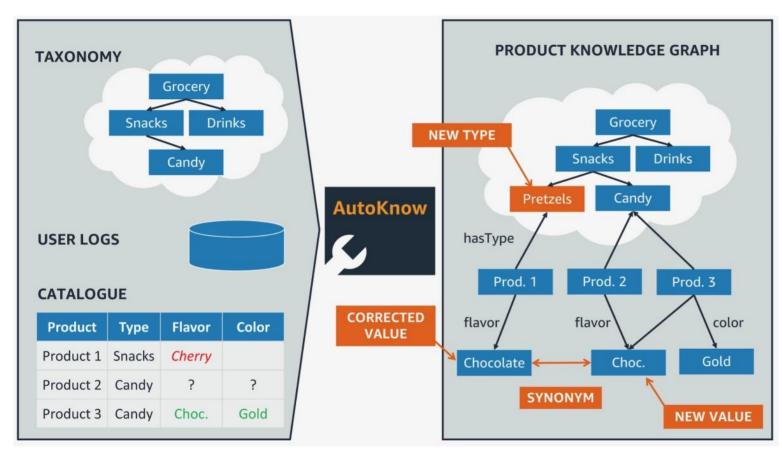
Challenges

- There is an enormous amount of data just for products...
- Can the KG be built/grown automatically?
- Automatic KG building:
 - most successful in stable domains (e.g., movie information)
 - few types and properties
 - many available sources of structured data
 - retail data is an evolving and unbounded domain
 - many product types
 - even more product properties (color for clothes, flavor for candy, wattage for electronics, ...)
 - new types and properties all the time
 - much of the information is unstructured / NL text:
 - product descriptions ("the coffee mug get too hot to hold"), customer reviews, questions-and-answers (QA) forums

Amazon's AutoKnow

- A project and software platform to automatically grow and maintain Amazon's Product Graph (the product information)
 - heavily based on ML techniques
- Inputs:
 - existing (and growing) product taxonomy (aka rdfs:subClassOf tree)
 - which also a product graph, because it includes product properties
 - a catalogue of products that includes:
 - structured information: labelled product names, product sheets, ...
 - unstructured product descriptions as free text
 - free-form product-related information:
 customer reviews, product-related QAs, product query data, ...

Amazon's AutoKnow



Tasks:

- adding new product types
- adding new product values
- correcting product values
- identifying synonyms

Amazon's AutoKnow

• Five modules (ontology suite + data suite):

1) taxonomy enrichment extends the number of entity types in the graph

- 2) *relation discovery* identifies attributes of products, those attributes' range of possible values (different flavors or colors, for instance), and, crucially, which of those attributes are important to customers
- 3) data imputation uses the entity types and relations discovered by the previous modules to determine whether free-form text associated with products contains any information missing from the graph
- 4) data cleaning sorts through existing and newly extracted data to see whether any of it was misclassified in the source texts
- *5) synonym finding* attempts to identify entity types and attribute values that have the same meaning

Taxonomy enrichment module

- Extends the number of entity types in the graph
- Labelling of product titles in the source catalogues:
 - labelling of product types:
 "Ben & Jerry's black cherry cheesecake <u>ice cream</u>"
 - labelling of product property values:
 "Ben & Jerry's <u>black cherry cheesecake</u> ice cream" (flavour)
 "<u>Ben & Jerry's</u> black cherry cheesecake ice cream" (brand)
 - ML model trained on Amazon's existing hand-made product data
- Hypernym classification (aka rdfs:subClassOf):
 - "Ice cream" \rightarrow "Ice cream and novelties" \rightarrow "Frozen"
 - data from customer interactions: which products customers viewed or purchased after a single query
 - ML model trained on manually-labelled product data

Relation discovery module

- Identifies
 - properties (attributes) of products
 - ranges of property values (e.g., different flavours or colors)
 - which of those attributes are important to customers
- Two classifiers:
 - whether the property applies to a given product (flavor applies to food but not to clothes)
 - how important the attribute is to buyers (brand name is more important for snack foods than for produce)
 - input data:
 - from providers (product descriptions)
 - from customers (reviews and Q&As)
 - trained on manually annotated data

Data imputation module

- Determine whether free-form text associated with products contains any information missing from the graph
- Looks for terms in product descriptions that
 - may fit the new product and attribute categories
 - but that are not yet in the graph.
- Term (word) embeddings (←S11)
 - represents descriptive terms as points in a vector space
 - related terms are grouped together
 - *if a number of terms clustered together in the space share the same property or product type, the unlabelled terms in the same cluster should, too*
 - example: the embedding for "black cherry cheesecake" is close to many embeddings that are "flavours"

Data cleaning module

- Sorts through existing and newly extracted data to see whether any of it was misclassified in the source texts
- ML model based on the Transformer architecture:
 - inputs:
 - textual product description
 - an attribute (flavor, volume, color, etc.)
 - a value for that attribute (chocolate, 16 ounces, blue, etc.)
 - output:
 - is the attribute value ok or not?
 - training data:
 - positive examples valid and frequent attribute-value pairs for a product type (all ice cream types have flavors)
 - negative examples replacing correct values with mismatched ones

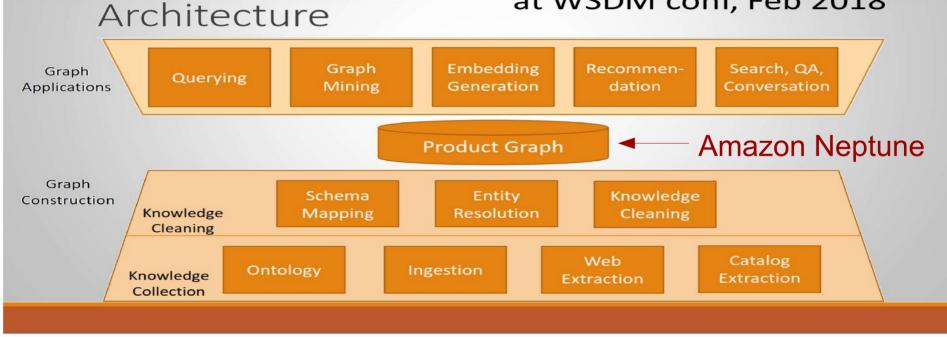
Synonym finding module

- Identify entity types and attribute values that have the same meaning
- Candidate synonyms:
 - analyse customer interaction data:
 - identify items that were viewed during the same queries
- Filter the candidates:
 - edit distance (a measure of the similarity of two strings of characters)
 - "a neural network"

Amazon

"We aim at building an authoritative knowledge graph for all products in the world"

Xin Luna Dong, Amazon, at WSDM conf, Feb 2018



Frank van Harmelen (2018): Keynote at CAiSE'18

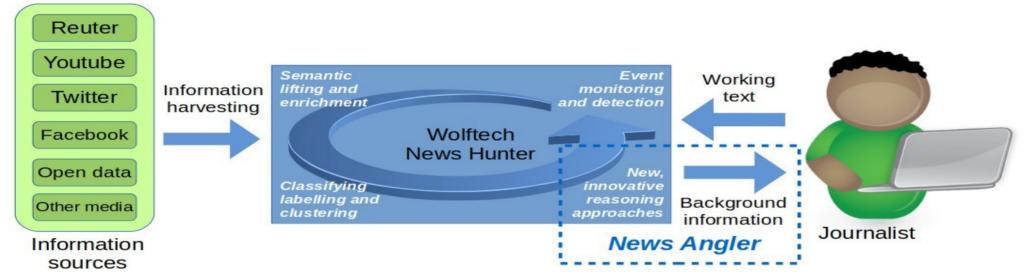
"Ongoing efforts"

- Handling products with multiple hypernyms
- Using image data in addition to structured data and NL text

The News Hunter Platform

http://newsangler.uib.no

Ongoing project: News Angler

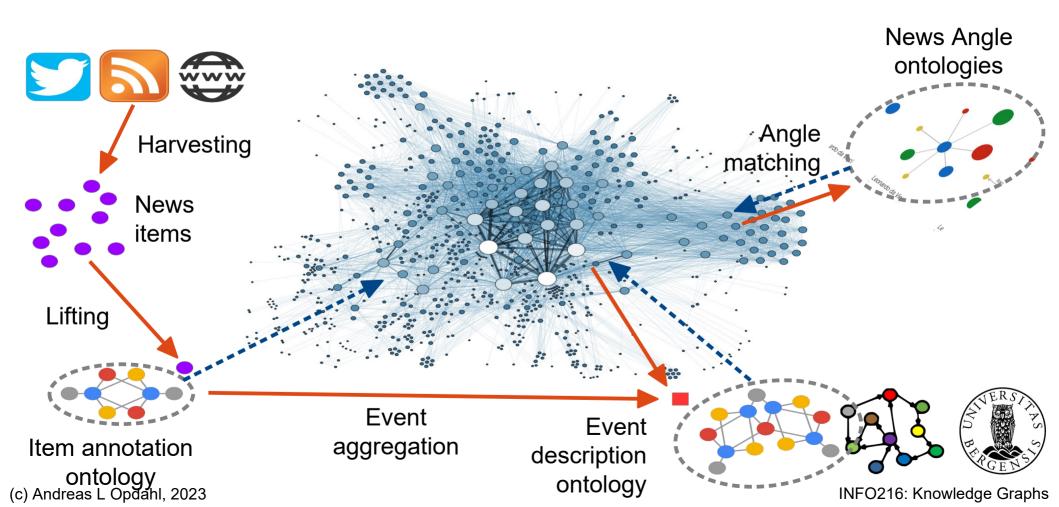


"Wolftech News supports and improves the workflows in a newsroom through mobile solutions for field work that are integrated with central systems for news monitoring, resource management, news editing, and multi-platform publishing"

- 1) Harvesting and analysing messages
- 2) Growing a semantic news graph
 - concepts, named entities, context...
- 3) Analysing working texts (stories)
- 4) Identifying background information
- 5) Prioritising and preparing
- 6) Journalistic and editorial preferences

Research: graph, searches, preparation, preferences, language, scaling

A single central news graph



Services

- Written in Python 3.8-3.9
- All services are deployed in docker containers
- FastAPI as the main python library for writing APIs

(c) Andreas L Opdahl, 2023

Slide by Marc Gallofré Ocaña

Services - harvesters

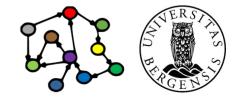
- Twitter harvester: connects to the Twitter API to read streams of tweets from news organizations accounts
- RSS harvester: downloads RSS feeds from news organisations
- GDELT harvester: gets the events and GKG datasets from GDELT projects
- NewsAPI harvester: use NewsAPI.org API to get real-time feeds of news from thousands of news outlets

(c) Andreas L Opdahl, 2023

Services - lifters

Lifters for news and GDELT that use NER to represent the information into knowledge graphs

- DbpediaSpotlight NEL: using DBpediaSpotlight for named entity linking
- SpaCy NEL: using SpaCy for named entity linking
- Kolitsas NEL: using Kolitsas algorithm for named entity linking



(c) Andreas L Opdahl, 2023

Slide by Marc Gallofré Ocaña

Technologies

- Docker Swarm
- Kafka (as pub/sub message queue to communicate between all services in the platform)
- Zookeeper
- Cassandra (storing raw data in a distributed cluster)
- Blazegraph (knowledge graph of news and events)
- MongoDB (configuration and metadata)
- All of them have been deployed using Docker containers



(c) Andreas L Opdahl, 2023

Slide by Marc Gallofré Ocaña

News Hunter Platform:

- 38 vCPUs
- 152GB RAM
- 20TB Disk
- 17 Instances

╋

1 Launcher instance for deploying the cloud infrastructure:

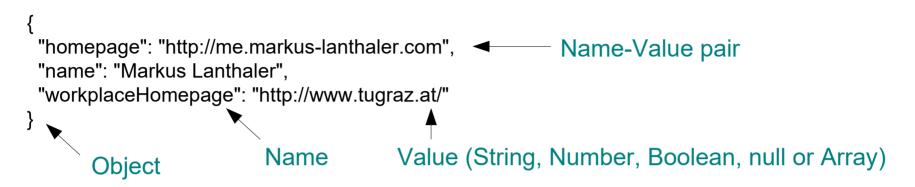
- 1 vCPU
- ⁻ 4 GB RAM

Slide by Marc Gallofré Ocaña

1 vCPU = 0.5CPU

JSON / JSON-LD

JSON

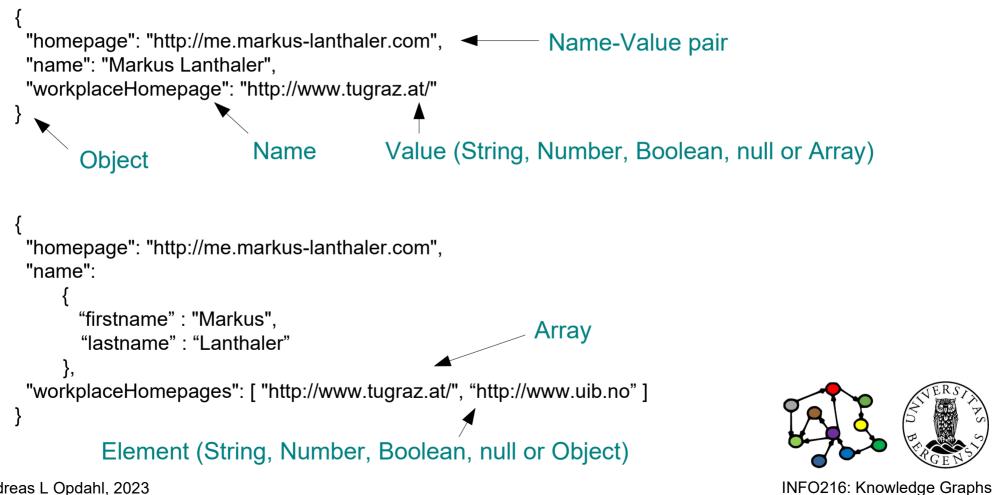


JavaScript Object Notation (JSON) www.json.org

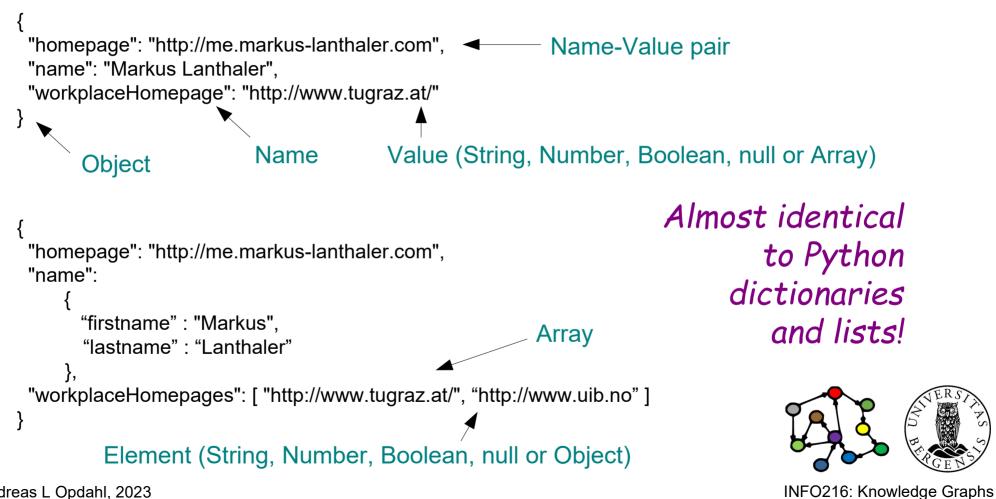
(c) Andreas L Opdahl, 2023

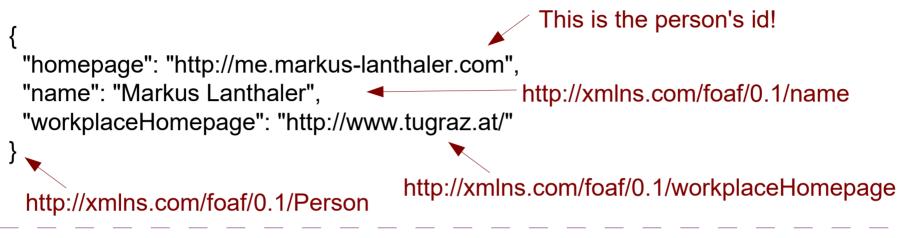
INFO216: Knowledge Graphs

JSON

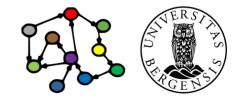


JSON





How to represent semantic data in JSON?



(c) Andreas L Opdahl, 2023

INFO216: Knowledge Graphs

JSON-LD

This is the person's id! "homepage": "http://me.markus-lanthaler.com", "name": "Markus Lanthaler", http://xmlns.com/foaf/0.1/name "workplaceHomepage": "http://www.tugraz.at/" http://xmlns.com/foaf/0.1/workplaceHomepage http://xmlns.com/foaf/0.1/Person JSON Linked Data (JSON-LD) json-ld.org "@id": "http://me.markus-lanthaler.com", "@type": "http://xmlns.com/foaf/0.1/Person", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/workplaceHomepage": { "@id" : "http://www.tugraz.at/" }

```
INFO216: Knowledge Graphs
```

JSON Linked Data (JSON-LD) json-ld.org

"@id": "http://me.markus-lanthaler.com",
"@type" : "http://xmlns.com/foaf/0.1/Person",
"http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
"http://xmlns.com/foaf/0.1/workplaceHomepage":
 { "@id" : "http://www.tugraz.at/" }
}

```
THERE IS A PROVIDE TO A PROVIDE
```

INFO216: Knowledge Graphs

<http://me.markus-lanthaler.com>

JSON Linked Data (JSON-LD) json-ld.org

"@id": "http://me.markus-lanthaler.com", "@type" : "http://xmlns.com/foaf/0.1/Person", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/workplaceHomepage": { "@id" : "http://www.tugraz.at/" } }

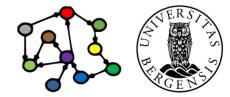
INFO216: Knowledge Graphs

<http://me.markus-lanthaler.com>

a <http://xmlns.com/foaf/0.1/Person>;

JSON Linked Data (JSON-LD) json-ld.org

"@id": "http://me.markus-lanthaler.com",
 "@type" : "http://xmlns.com/foaf/0.1/Person",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "http://xmlns.com/foaf/0.1/workplaceHomepage":
 { "@id" : "http://www.tugraz.at/" }
}



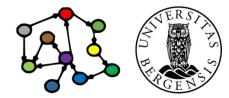
INFO216: Knowledge Graphs

<http://me.markus-lanthaler.com>

a <http://xmlns.com/foaf/0.1/Person> ; <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler";

JSON Linked Data (JSON-LD) json-ld.org

"@id": "http://me.markus-lanthaler.com", "@type" : "http://xmlns.com/foaf/0.1/Person", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/workplaceHomepage": { "@id" : "http://www.tugraz.at/" }



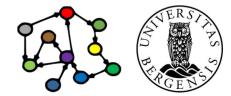
INFO216: Knowledge Graphs

<http://me.markus-lanthaler.com>

a <http://xmlns.com/foaf/0.1/Person> ; <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler"; <http://xmlns.com/foaf/0.1/workplaceHomepage> <http://www.tugraz.at/> .

JSON Linked Data (JSON-LD) json-ld.org

"@id": "http://me.markus-lanthaler.com", "@type" : "http://xmlns.com/foaf/0.1/Person", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/workplaceHomepage": { "@id" : "http://www.tugraz.at/" }



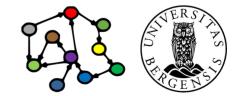
INFO216: Knowledge Graphs

<http://me.markus-lanthaler.com>

a <http://xmlns.com/foaf/0.1/Person> ; <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler"; <http://xmlns.com/foaf/0.1/workplaceHomepage> "http://www.tugraz.at/" .

JSON Linked Data (JSON-LD) json-ld.org

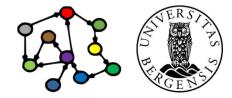
"@id": "http://me.markus-lanthaler.com", "@type" : "http://xmlns.com/foaf/0.1/Person", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/workplaceHomepage": "http://www.tugraz.at/"



INFO216: Knowledge Graphs

Some reserved keys in JSON-LD

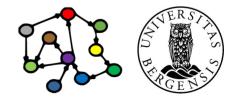
- @id: the JSON object with the @id key is identified by a particular URI
- @type: the JSON object with the @type key has a particular RDF type (or several types)
- @value: a value is a literal
- @context: a JSON object that contains the context (or semantic mapping) for the other objects in the same JSON array
- @base, @graph, @language, @vocab, ...



INFO216: Knowledge Graphs

JSON-LD context

```
"@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
  "@id": "http://xmlns.com/foaf/0.1/homepage",
  "@type": "@id"
"@id": "http://me.markus-lanthaler.com/",
"name": "Markus Lanthaler",
"homepage": "http://www.markus-lanthaler.com/"
```



```
INFO216: Knowledge Graphs
```

JSON-LD forms

- The same graph can be expressed in different ways:
 - *expansion* removes context by pushing semantics out into the objects
 - also does regularisation
 - *compaction* simplifies the objects by pulling semantics back into the context
 - *flattening* creates a normalised form for easier parsing by computer
- Regularised and normalised forms are easier to program than "free" JSON-LD because they have a more consistent structure

INFO216: Knowledge Graphs

Final session: Questions and quizzes Wednesday May 31st 1215-1400