
INFO216:
Advanced Modelling

Theme, spring 2017:
Modelling and Programming

the Web of Data

Andreas L. Opdahl
<Andreas.Opdahl@uib.no>

Session S12 OWL
 Themes:

– restriction classes
– anatomy of OWL
– more examples of Turtle (+ Manchester Syntax)

– builds on S08: RDFS-Plus

• what and why?
• basic OWL constructs
• complex classes

• Themes for S13:

– rules, description logic, decision problems

– perhaps Jena's OntModel class

Readings

• Allemang & Hendler (2011):
Semantic Web for the Working Ontologist
– chapter 11 (“Basic OWL”) and 12 (even more OWL!)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

Web Ontology
Language (OWL)

RDFS is a useful starting point... (S08)

• But there's lots of simple stuff it cannot express, e.g.:
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique”

– “a Republic has exactly one President”

– “a FootballTeam has 11 players, a VolleyballTeam only 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!

What does OWL offer? (S08)

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• certain OWL ontologies are also logical systems

– description logic (DL)

– OWL DL has good computational behaviours

• (appearance of) more powerful entailments

The Core
OWL Concepts

Classes, properties, and individuals

• Web Ontology Language (OWL):
– builds on RDF and RDFS (but not SKOS)

– uses classes and properties from RDF and RDFS

– adds precision and formality

• Basic OWL-concepts:

– owl:Class rdfs:subClassOf rdfs:Class .

– “owl:Property” rdfs:subClassOf “rdf:Property” .
– “owl:Individual” rdfs:subClassOf rdfs:Resource .

• good practice: keep these three disjoint, i.e., no
resource has more than one of them as rdf:type

• in OWL DL, this is a requirement...

Building blocks

• OWL 2 has three building blocks:
– entities:

• elements used to refer to real-world objects

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty,
owl:AnnotationProperty, owl:ObjectProperty

– axioms:
• basic statements the OWL ontology expresses

• every triple in the RDF graph is an axiom

– expressions:
• combining simpler classes or properties

to define more complex ones

• based on constructors

Things and named individuals

• owl:Thing:
– is equivalent to rdfs:Resource

• owl:Nothing

– is the empty set

– no resource has it as its rdf:type

• owl:NamedIndividual
– is an owl:Thing with an IRI
– defined in OWL2 DL

Named and constructed classes

• owl:NamedClass (with an IRI):
– semantics are given by:

• IRI-s, labels and other annotations

• domain, range, subClassOf and other relationships

• Constructed (or complex) owl:Class:
– built from existing classes, properties, individuals

• which can be named or anonymous

– constructed classes are anonymous upon declaration,

• but can be named later

– unions, intersections and negations of existing classes

– restrictions on existing properties

– enumeration of existing individuals

Object and datatype properties

• RDF triples: object is either a resource or a literal
– OWL has two corresponding types of predicates

• owl:ObjectProperty:

– rdfs:range (“verdiområde”) is an OWL-class of
individuals

– corresponds to RDF triples with a resource object

• owl:DatatypeProperty:
– rdfs:range is an RDFS-datatype
– corresponds to RDF triples with a literal object

• rdfs:domain (“definisjonsmengden”) for OWL properties
is always an OWL-class of individuals

Annotation properties

• Used to annotate
– ontologies (e.g., version)
– entities (classes, individuals, properties) in the ont.

– axioms (triples) in the ontology

• Annotation properties have RDFS-semantics,

– but no description logic (DL) semantics
– often, they are not “counted” alongside object and

datatype properties

Summary: basic OWL types

• owl:Thing, owl:Nothing, owl:NamedIndividual
• owl:NamedClass, owl:Class
• owl:ObjectProperty, owl:DatatypeProperty

• owl:AnnotationProperty, owl:OntologyProperty

More precise properties in “RDFS Plus”

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (today!)

– chained properties, e.g.:
fam:hasGrandparent

owl:propertyChainAxiom (:hasParent :hasParent) .

Sameness and difference in “RDFS Plus”

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members

Complex OWL
classes

Enumeration classes

• An enumeration class is defined by listing its member
individuals, e.g.:

– cal:Season owl:equivalentClass [
a owl:Class ;

 owl:oneOf (cal:Spring ... cal:Winter)] .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly

A simpler way to write complex classes?

• Why do we write:
cal:Season owl:equivalentClass [

a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter)] .

instead of just:
cal:Season

a owl:Class ;
 owl:oneOf (cal:Spring ... cal:Winter) .

• Reason:

– we do not always want owl:equivalentClass
– sometimes we want just rdfs:subClassOf
– owl:equivalentClass entails two-way rdfs:subClassOf

Union classes

• The new class contains all the individuals in either of two
or more existing ones, e.g.,

– fam:Parent owl:equivalentClass
[a owl:Class;
 owl:unionOf (fam:Father fam:Mother)] .

• “Entailment rule”:
– if C owl:equivalentClass owl:unionOf (C1... Cn) then

• C1 rdfs:subClassOf C Cn rdfs:subClassOf C .

• why not say just, e.g.,:

– fam:Father rdfs:subClassOf fam:Parent .

– fam:Mother rdfs:subClassOf fam:Parent .

?

Intersection classes

• The complex class contains all the individuals in all of two or
more existing ones, e.g.

– uib:StudentAssistant owl:equivalentClass
[a owl:Class;
 owl:intersectionOf (uib:Student uib:Teacher)] .

• “Entailment rule”:

– if C owl:equivalentClass owl:intersectionOf (C1... Cn) then

• C rdfs:subClassOf C1 C rdfs:subClassOf Cn .

• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .

– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?

Complement classes

• The complex class contains all the individuals that are not
in an existing one:
– fam:Father owl:complementOf fam:Mother .

Complement classes

• The complex class contains all the individuals that are not
in an existing one:
– fam:Father owl:equivalentClass [

a owl:Class;
owl:complementOf fam:Mother] .

Complement classes

• The complex class contains all the individuals that are not
in an existing one:
– fam:Father owl:equivalentClass

owl:intersectionOf (
fam:Parent
owl:complementOf fam:Mother

) .

Complement classes

• The complex class contains all the individuals that are not
in an existing one:
– fam:Father owl:equivalentClass

owl:intersectionOf (
fam:Parent
[a owl:Class ;
 owl:complementOf fam:Mother
]

) .

Closed World Assumption (CWA)

• Whenever something is not explicitly stated in the ontology,
can we assume that the opposite is the case?

– LinkedMDB has no more than three James Dean movies –
can we assume he only played in three?

• Classical logic and many ICT languages assume so:

– “Closed World Assumption” (CWA)

• OWL does not assume that:

– “Open World Assumption” (OWA)

– In RDF and OWL, we do not assume that something is
false just because it is not stated

Negated properties (OWL 2)

• A negated property states that there is no triple with a
particular subject, predicate and object, e.g.,

• [] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary .

Negated properties (OWL 2)

• A negated property states that there is no triple with a
particular subject, predicate and object, e.g.,

• [] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary .

• [rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary] .

• Note similarity to triple reification

Summary: complex classes

• owl:oneOf
• owl:unionOf
• owl:intersectionOf

• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual,

owl:assertionProperty, owl:targetIndividual

OWL restriction
classes

Property value restrictions

• Defining a class by a particular value on one of its
properties, e.g.:
– fam:Woman owl:equivalentClass [

a owl:Restriction ;
owl:onProperty fam:hasGender ;
owl:hasValue fam:Female

] .

Property value restrictions

• Defining a class by a particular value on one of its
properties, e.g.:
– fam:Woman owl:equivalentClass [

a owl:Restriction ;
owl:onProperty fam:hasGender ;
owl:hasValue fam:Female

] .

– fam:Woman owl:equivalentClass
owl:intersectionOf (

fam:Person
[a owl:Restriction ;

owl:onProperty fam:hasGender ;
owl:hasValue fam:Female]

) .

Existential property restrictions

• Defining a class by the existence of a relation (object
property) to an individual in (another or the same) class,
e.g.:

– fam:Brother owl:equivalentClass
owl:intersectionOf (

fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom owl:Thing]

) .

• owl:someValuesFrom: each individual in the defined class
has at least one object property (given by owl:onProperty) to
an individual in the other class (given by
owl:someValuesFrom)

Existential property restrictions

• Defining a class by the existence of a relation (object
property) to an individual in (another or the same) class,
e.g.:

– fam:Uncle owl:equivalentClass
owl:intersectionOf (

fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom fam:Parent]

) .

• owl:someValuesFrom: each individual in the defined class
has at least one object property (given by owl:onProperty) to
an individual in the other class (given by
owl:someValuesFrom)

Universal property restrictions

• Defining a class by the necessity of a relation (object
property) only to individuals in (another or the same)
class, e.g.:

– fam:HappyFather owl:equivalentClass
owl:intersectionOf (

fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson]

) .

Universal property restrictions

• Defining a class by the necessity of a relation (object
property) only to individuals in (another or the same)
class, e.g.:

– fam:HappyFather owl:equivalentClass
owl:intersectionOf (

fam:Father
[a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson]

) .

Universal property restrictions

• Defining a class by the necessity of a relation (object
property) only to individuals in (another or the same)
class, e.g.:

– fam:HappyFather owl:equivalentClass
owl:intersectionOf (

fam:Male
[a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson]

[a owl:Restriction ;
owl:onProperty fam:hasChild ;
owl:someValuesFrom fam:HappyPerson]

) .

Property value restriction

• Using an anonymous property, e.g.:
– fam:Orphan owl:equivalentClass

owl:intersectionOf (
fam:Person
[rdf:type owl:Restriction ;
 owl:onProperty [owl:inverseOf :hasChild] ;
 owl:allValuesFrom fam:Dead
]

) .

Property self-reflexion

• Defining a class by a Self value on one of its properties,
e.g.:
– fam:NarcissisticPerson owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty fam:loves ;
owl:hasSelf "true"^^xsd:boolean .

] .

Property value restriction

• Restrictions on data range, e.g.:
– fam:personAge owl:equivalentClass

[rdf:type rdfs:Datatype;
owl:onDatatype xsd:integer;
owl:withRestrictions (

[xsd:minInclusive "0"^^xsd:integer]
[xsd:maxInclusive "150"^^xsd:integer])

] .

– :toddlerAge owl:equivalentClass
[rdf:type rdfs:Datatype;

owl:oneOf ("1"^^xsd:integer "2"^^xsd:integer)
] .

Cardinality restriction

• Defining a class by the number of object values its
individuals have for some property, e.g.:
– music:Quartet owl:equivalentClass

owl:intersectionOf (
music:Ensemble
[a owl:Restriction ;

owl:onProperty music:hasInstrument ;
owl:cardinality 4]

) .

• owl:cardinality gives the exact cardinality
owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality

Qualified cardinality restriction (OWL2)

• Defining a class by the number of object values its
individuals have of a given class for some property, e.g.:
– pol:Triumvirate owl:equivalentClass

owl:intersectionOf (
pol:PoliticalLeadership
[a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader]

) .

• owl:qualifiedCardinality gives the exact cardinality
owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality

• Perhaps the most important new thing in OWL2!

Qualified cardinality restriction (OWL2)

• music:StringQuartet owl:equivalentClass
owl:intersectionOf (

music:MusicalQuartet
[a owl:Class ;

owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violin]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Viola]

[a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cello]

) .

Summary: property restrictions

• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality

• owl:onClass, owl:qualifiedCardinality,
owl:minQualifiedCardinality, owl:maxQualifiedCardinality

Anatomy of
OWL

http://www.w3.org/TR/owl2-rdf-based-semantics/

OWL versions

• OWL “1” (2002):
– OWL Full – anything goes

– OWL DL – fragment of OWL Full,

• formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):
– backwards compatible with OWL “1”!

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

– OWL2 DL – has three further fragments:

• OWL2 EL – quick reasoning, fragment of OWL2 DL

• OWL2 RL – rule language, fragment of OWL2 DL

• OWL2 QL – query language, fragment of OWL2 DL

OWL2 DL OWL2 Full

Summary of OWL terms
• owl:Ontology owl:Class owl:DatatypeProperty owl:ObjectProperty owl:NamedIndividual

• owl:Thing owl:Nothing owl:topObjectProperty owl:bottomObjectProperty owl:topDataProperty
owl:bottomDataProperty

• owl:inverseOf owl:FunctionalProperty owl:InverseFunctionalProperty owl:TransitiveProperty
owl:ReflexiveProperty owl:IrreflexiveProperty owl:SymmetricProperty owl:AsymmetricProperty
owl:propertyChainAxiom

• owl:equivalentClass owl:disjointWith owl:equivalentProperty owl:propertyDisjointWith owl:sameAs
owl:differentFrom owl:AllDifferent owl:AllDisjointClasses owl:AllDisjointProperties owl:members
owl:distinctMembers owl:disjointUnionOf owl:NegativePropertyAssertion owl:assertionProperty
owl:sourceIndividual owl:targetIndividual owl:targetValue

• owl:complementOf owl:intersectionOf owl:unionOf owl:oneOf owl:datatypeComplementOf
owl:onDatatype owl:withRestrictions

• owl:Restriction owl:onProperty owl:onProperties owl:allValuesFrom owl:someValuesFrom
owl:onDataRange owl:hasValue owl:hasSelf owl:cardinality owl:qualifiedCardinality
owl:minCardinality owl:maxCardinality owl:onClass owl:minQualifiedCardinality
owl:maxQualifiedCardinality

• owl:hasKey

• owl:annotatedProperty owl:annotatedSource owl:annotatedTarget owl:Annotation
owl:AnnotationProperty owl:Axiom owl:imports owl:versionInfo owl:versionIRI owl:priorVersion
owl:backwardCompatibleWith owl:OntologyProperty owl:incompatibleWith owl:deprecated
owl:DeprecatedClass owl:DeprecatedProperty

• deprecated: owl:DataRange

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

