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Session S12 OWL
 Themes:

– restriction classes
– anatomy of OWL
– more examples of Turtle (+ Manchester Syntax)

– builds on S08: RDFS-Plus

• what and why?
• basic OWL constructs
• complex classes

• Themes for S13:

– rules, description logic, decision problems

– perhaps Jena's OntModel class



Readings

• Allemang & Hendler (2011): 
Semantic Web for the Working Ontologist
– chapter 11 (“Basic OWL”) and 12 (even more OWL!)

• Forum links (cursory):

– OWL 2 Overview:
http://www.w3.org/TR/owl-overview/

– OWL 2 Primer:
http://www.w3.org/TR/owl-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes



Web Ontology
Language (OWL)



RDFS is a useful starting point... (S08)

• But there's lots of simple stuff it cannot express, e.g.: 
– “every ancestor of an ancestor is an ancestor too”

– “the BirthNumber of a Person is unique” 

– “a Republic has exactly one President”

– “a FootballTeam has 11 players, a VolleyballTeam only 6”

– “a StringQuartet has two violins but only one viola and one cello”

– “classes with different IRIs actually represent the same class”

– “resources with different IRIs represent the same resource”

– “properties with different IRIs are actually the same”

– “two individuals are different”, “two classes are disjoint”

– “a class is a union (or intersection) of other classes”

– “a class is a negation of another class”

• OWL expresses all this and more!



What does OWL offer? (S08)

• Extensions of RDFS, e.g.:
– more specific types of properties
– identical and different classes, properties, individuals

– defining new classes:
• complex classes (union, intersection, complement)

• property restrictions, enumeration of individuals

– defining new properties based on existing ones

– mathematical formality (for large parts of OWL)
• certain OWL ontologies are also logical systems

– description logic (DL)

– OWL DL has good computational behaviours

• (appearance of) more powerful entailments



The Core
OWL Concepts



Classes, properties, and individuals

• Web Ontology Language (OWL):
– builds on RDF and RDFS (but not SKOS)

– uses classes and properties from RDF and RDFS

– adds precision and formality

• Basic OWL-concepts:

– owl:Class rdfs:subClassOf rdfs:Class .

– “owl:Property” rdfs:subClassOf “rdf:Property” .
– “owl:Individual” rdfs:subClassOf rdfs:Resource .

• good practice: keep these three disjoint, i.e., no 
resource has more than one of them as rdf:type

• in OWL DL, this is a requirement...



Building blocks

• OWL 2 has three building blocks:
– entities: 

• elements used to refer to real-world objects

• owl:NamedClass, owl:NamedIndividual

• owl:ObjectProperty, owl:DatatypeProperty, 
owl:AnnotationProperty, owl:ObjectProperty

– axioms: 
• basic statements the OWL ontology expresses

• every triple in the RDF graph is an axiom

– expressions: 
• combining simpler classes or properties 

to define more complex ones

• based on constructors



Things and named individuals

• owl:Thing:
– is equivalent to rdfs:Resource

• owl:Nothing

– is the empty set

– no resource has it as its rdf:type

• owl:NamedIndividual
– is an owl:Thing with an IRI
– defined in OWL2 DL



Named and constructed classes

• owl:NamedClass (with an IRI):
– semantics are given by:

• IRI-s, labels and other annotations

• domain, range, subClassOf and other relationships

• Constructed (or complex) owl:Class:
– built from existing classes, properties, individuals

• which can be named or anonymous

– constructed classes are anonymous upon declaration, 

• but can be named later

– unions, intersections and negations of existing classes

– restrictions on existing properties

– enumeration of existing individuals



Object and datatype properties

• RDF triples: object is either a resource or a literal
– OWL has two corresponding types of predicates

• owl:ObjectProperty:

– rdfs:range (“verdiområde”) is an OWL-class of 
individuals

– corresponds to RDF triples with a resource object

• owl:DatatypeProperty:
– rdfs:range is an RDFS-datatype
– corresponds to RDF triples with a literal object

• rdfs:domain (“definisjonsmengden”) for OWL properties 
is always an OWL-class of individuals



Annotation properties

• Used to annotate
– ontologies (e.g., version)
– entities (classes, individuals, properties) in the ont.

– axioms (triples) in the ontology

• Annotation properties have RDFS-semantics, 

– but no description logic (DL) semantics
– often, they are not “counted” alongside object and 

datatype properties



Summary: basic OWL types

• owl:Thing, owl:Nothing, owl:NamedIndividual
• owl:NamedClass, owl:Class
• owl:ObjectProperty, owl:DatatypeProperty

• owl:AnnotationProperty, owl:OntologyProperty



More precise properties in “RDFS Plus”

• owl:inverseOf
• owl:SymmetricProperty, owl:AsymmetricProperty
• owl:ReflexiveProperty, owl:IrreflexiveProperty

• owl:TransitiveProperty

• owl:FunctionalProperty, owl:InverseFunctionalProperty

• owl:hasKey
• Also:

– negated properties (today!)

– chained properties, e.g.:
fam:hasGrandparent  

owl:propertyChainAxiom  ( :hasParent  :hasParent ) .



Sameness and difference in “RDFS Plus”

• Individuals:
– pairwise: owl:sameAs, owl:differentFrom
– groupwise difference: owl:AllDifferent 

• Classes:

– pairwise: owl:equivalentClass, owl:disjointWith

– groupwise difference: owl:AllDisjointClasses
• Properties:

– pairwise: equivalentProperty, propertyDisjointWith

– groupwise difference: owl:AllDisjointProperties

• Membership in the groups:

– owl:distinctMembers (preferred) or owl:members 



Complex OWL
classes



Enumeration classes

• An enumeration class is defined by listing its member 
individuals, e.g.:

– cal:Season owl:equivalentClass [ 
a owl:Class ; 

  owl:oneOf ( cal:Spring ... cal:Winter ) ] .

• An enumeration class is closed

– there are no other member individuals

– ensured by using RDF Collections:

• rdf:List, rdf:first, rdf:rest, rdf:nil

• Does not imply that the individuals are distinct

– this must be stated explicitly



A simpler way to write complex classes?

• Why do we write:
cal:Season owl:equivalentClass [ 

a owl:Class ; 
  owl:oneOf ( cal:Spring ... cal:Winter ) ] .

instead of just:
cal:Season 

a owl:Class ; 
  owl:oneOf ( cal:Spring ... cal:Winter ) .

• Reason:

– we do not always want owl:equivalentClass
– sometimes we want just rdfs:subClassOf
– owl:equivalentClass entails two-way rdfs:subClassOf



Union classes

• The new class contains all the individuals in either of two 
or more existing ones, e.g.,

– fam:Parent owl:equivalentClass
[ a owl:Class;
  owl:unionOf ( fam:Father fam:Mother ) ] .

• “Entailment rule”:
– if C owl:equivalentClass owl:unionOf ( C1... Cn ) then

• C1 rdfs:subClassOf C . ... Cn rdfs:subClassOf C .

• why not say just, e.g.,:

– fam:Father rdfs:subClassOf fam:Parent .

– fam:Mother rdfs:subClassOf fam:Parent .

?



Intersection classes

• The complex class contains all the individuals in all of two or 
more existing ones, e.g.

– uib:StudentAssistant owl:equivalentClass
[ a owl:Class; 
  owl:intersectionOf ( uib:Student uib:Teacher ) ] .

• “Entailment rule”:

– if C owl:equivalentClass owl:intersectionOf ( C1... Cn ) then

• C rdfs:subClassOf C1 . ... C rdfs:subClassOf Cn .

• why not say, e.g.:

– uib:StudentAssistant rdfs:subClassOf uib:Student .

– uib:StudentAssistant rdfs:subClassOf uib:Teacher .

?



Complement classes

• The complex class contains all the individuals that are not 
in an existing one:
– fam:Father owl:complementOf fam:Mother .



Complement classes

• The complex class contains all the individuals that are not 
in an existing one:
– fam:Father owl:equivalentClass [

a owl:Class;
owl:complementOf fam:Mother ] .



Complement classes

• The complex class contains all the individuals that are not 
in an existing one:
– fam:Father owl:equivalentClass

owl:intersectionOf ( 
fam:Parent 
owl:complementOf fam:Mother

) .



Complement classes

• The complex class contains all the individuals that are not 
in an existing one:
– fam:Father owl:equivalentClass

owl:intersectionOf ( 
fam:Parent
[ a owl:Class ;
  owl:complementOf fam:Mother
]

) .



Closed World Assumption (CWA)

• Whenever something is not explicitly stated in the ontology, 
can we assume that the opposite is the case?

– LinkedMDB has no more than three James Dean movies – 
can we assume he only played in three?

• Classical logic and many ICT languages assume so:

– “Closed World Assumption” (CWA)

• OWL does not assume that:

– “Open World Assumption” (OWA)

– In RDF and OWL, we do not assume that something is 
false just because it is not stated



Negated properties (OWL 2)

• A negated property states that there is no triple with a 
particular subject, predicate and object, e.g., 

• []  rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual   :Bill ;
owl:assertionProperty  :hasWife ;
owl:targetIndividual   :Mary .



Negated properties (OWL 2)

• A negated property states that there is no triple with a 
particular subject, predicate and object, e.g., 

• []  rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual   :Bill ;
owl:assertionProperty  :hasWife ;
owl:targetIndividual   :Mary .

• [ rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual   :Bill ;
owl:assertionProperty  :hasWife ;
owl:targetIndividual   :Mary ] .

• Note similarity to triple reification



Summary: complex classes

• owl:oneOf
• owl:unionOf
• owl:intersectionOf

• owl:complementOf (and the CWA)
• owl:NegativePropertyAssertion, owl:sourceIndividual, 

owl:assertionProperty, owl:targetIndividual



OWL restriction
classes



Property value restrictions

• Defining a class by a particular value on one of its 
properties, e.g.:
– fam:Woman owl:equivalentClass [

a owl:Restriction ;
owl:onProperty fam:hasGender ;
owl:hasValue fam:Female

] .



Property value restrictions

• Defining a class by a particular value on one of its 
properties, e.g.:
– fam:Woman owl:equivalentClass [

a owl:Restriction ;
owl:onProperty fam:hasGender ;
owl:hasValue fam:Female

] .

– fam:Woman owl:equivalentClass 
owl:intersectionOf (

fam:Person
[ a owl:Restriction ;

owl:onProperty fam:hasGender ;
owl:hasValue fam:Female ] 

) .



Existential property restrictions

• Defining a class by the existence of a relation (object 
property) to an individual in (another or the same) class, 
e.g.:

– fam:Brother owl:equivalentClass 
owl:intersectionOf (

fam:Male
[ a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom owl:Thing ] 

) .

• owl:someValuesFrom: each individual in the defined class 
has at least one object property (given by owl:onProperty) to 
an individual in the other class (given by 
owl:someValuesFrom)



Existential property restrictions

• Defining a class by the existence of a relation (object 
property) to an individual in (another or the same) class, 
e.g.:

– fam:Uncle owl:equivalentClass 
owl:intersectionOf (

fam:Male
[ a owl:Restriction ;

owl:onProperty fam:hasSibling ;
owl:someValuesFrom fam:Parent ] 

) .

• owl:someValuesFrom: each individual in the defined class 
has at least one object property (given by owl:onProperty) to 
an individual in the other class (given by 
owl:someValuesFrom)



Universal property restrictions

• Defining a class by the necessity of a relation (object 
property) only to individuals in (another or the same) 
class, e.g.:

– fam:HappyFather owl:equivalentClass 
owl:intersectionOf (

fam:Male
[ a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson ] 

) .



Universal property restrictions

• Defining a class by the necessity of a relation (object 
property) only to individuals in (another or the same) 
class, e.g.:

– fam:HappyFather owl:equivalentClass 
owl:intersectionOf (

fam:Father
[ a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson ] 

) .



Universal property restrictions

• Defining a class by the necessity of a relation (object 
property) only to individuals in (another or the same) 
class, e.g.:

– fam:HappyFather owl:equivalentClass 
owl:intersectionOf (

fam:Male
[ a owl:Restriction ;

owl:onProperty fam:hasChild ;
owl:allValuesFrom fam:HappyPerson ] 

[ a owl:Restriction ;
owl:onProperty fam:hasChild ;
owl:someValuesFrom fam:HappyPerson ] 

) .



Property value restriction

• Using an anonymous property, e.g.:
– fam:Orphan  owl:equivalentClass   

owl:intersectionOf (
fam:Person
[ rdf:type owl:Restriction ;
  owl:onProperty [ owl:inverseOf  :hasChild ] ;
  owl:allValuesFrom  fam:Dead 
] 

) .



Property self-reflexion

• Defining a class by a Self value on one of its properties, 
e.g.:
– fam:NarcissisticPerson owl:equivalentClass  [

rdf:type        owl:Restriction ;
owl:onProperty  fam:loves ;
owl:hasSelf     "true"^^xsd:boolean .

] .



Property value restriction

• Restrictions on data range, e.g.:
– fam:personAge  owl:equivalentClass

[ rdf:type  rdfs:Datatype;
owl:onDatatype  xsd:integer;
owl:withRestrictions (

[ xsd:minInclusive  "0"^^xsd:integer ]
[ xsd:maxInclusive  "150"^^xsd:integer ]  )

] .

– :toddlerAge  owl:equivalentClass
[ rdf:type rdfs:Datatype;

owl:oneOf ( "1"^^xsd:integer  "2"^^xsd:integer)
] .



Cardinality restriction

• Defining a class by the number of object values its 
individuals have for some property, e.g.:
– music:Quartet owl:equivalentClass 

owl:intersectionOf (
music:Ensemble
[ a owl:Restriction ;

owl:onProperty music:hasInstrument ;
owl:cardinality 4 ] 

) .

• owl:cardinality gives the exact cardinality
owl:minCardinality gives the least cardinality
owl:maxCardinality gives the greatest cardinality



Qualified cardinality restriction (OWL2)

• Defining a class by the number of object values its 
individuals have of a given class for some property, e.g.:
– pol:Triumvirate owl:equivalentClass 

owl:intersectionOf (
pol:PoliticalLeadership
[ a owl:Restriction ;

owl:onProperty pol:hasMember ;
owl:qualifiedCardinality 3 ;
owl:onClass pol:PoliticalLeader  ] 

) .

• owl:qualifiedCardinality gives the exact cardinality
owl:minQualifiedCardinality gives the least cardinality
owl:maxQualifiedCardinality gives the greatest cardinality

• Perhaps the most important new thing in OWL2!



Qualified cardinality restriction (OWL2)

• music:StringQuartet owl:equivalentClass
owl:intersectionOf (

music:MusicalQuartet
[ a owl:Class ;

owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “2” ;
owl:onClass music:Violin ]

[ a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Viola ]

[ a owl:Class ;
owl:onProperty music:hasInstrument ;
owl:qualifiedCardinality “1” ;
owl:onClass music:Cello ]

) .



Summary: property restrictions

• owl:Restriction owl:onProperty
• owl:someValuesFrom, owl:allValuesFrom, owl:hasValue
• owl:cardinality, owl:minCardinality, owl:maxCardinality

• owl:onClass, owl:qualifiedCardinality, 
owl:minQualifiedCardinality, owl:maxQualifiedCardinality



Anatomy of
OWL



http://www.w3.org/TR/owl2-rdf-based-semantics/



OWL versions

• OWL “1” (2002):
– OWL Full – anything goes

– OWL DL – fragment of OWL Full, 

• formal semantics through description logic

– OWL Lite – simple fragment of OWL DL, not much used

• OWL 2 (2008):
– backwards compatible with OWL “1”!

– OWL2 DL – fragment of OWL2 full, extension of OWL DL

– OWL2 DL – has three further fragments:

• OWL2 EL – quick reasoning, fragment of OWL2 DL

• OWL2 RL – rule language, fragment of OWL2 DL

• OWL2 QL – query language, fragment of OWL2 DL



OWL2 DL OWL2 Full



Summary of OWL terms
• owl:Ontology owl:Class owl:DatatypeProperty owl:ObjectProperty owl:NamedIndividual 

• owl:Thing owl:Nothing owl:topObjectProperty owl:bottomObjectProperty owl:topDataProperty 
owl:bottomDataProperty

• owl:inverseOf owl:FunctionalProperty owl:InverseFunctionalProperty owl:TransitiveProperty 
owl:ReflexiveProperty  owl:IrreflexiveProperty owl:SymmetricProperty owl:AsymmetricProperty  
owl:propertyChainAxiom

• owl:equivalentClass owl:disjointWith owl:equivalentProperty owl:propertyDisjointWith owl:sameAs 
owl:differentFrom owl:AllDifferent owl:AllDisjointClasses owl:AllDisjointProperties owl:members 
owl:distinctMembers owl:disjointUnionOf owl:NegativePropertyAssertion owl:assertionProperty 
owl:sourceIndividual  owl:targetIndividual owl:targetValue 

• owl:complementOf  owl:intersectionOf owl:unionOf owl:oneOf owl:datatypeComplementOf 
owl:onDatatype owl:withRestrictions

• owl:Restriction owl:onProperty owl:onProperties owl:allValuesFrom owl:someValuesFrom 
owl:onDataRange owl:hasValue owl:hasSelf owl:cardinality owl:qualifiedCardinality 
owl:minCardinality  owl:maxCardinality owl:onClass owl:minQualifiedCardinality 
owl:maxQualifiedCardinality 

• owl:hasKey 

• owl:annotatedProperty owl:annotatedSource owl:annotatedTarget owl:Annotation 
owl:AnnotationProperty owl:Axiom owl:imports owl:versionInfo owl:versionIRI owl:priorVersion 
owl:backwardCompatibleWith owl:OntologyProperty owl:incompatibleWith owl:deprecated 
owl:DeprecatedClass owl:DeprecatedProperty 

• deprecated: owl:DataRange
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