Lab Solutions

From info216
Revision as of 08:24, 7 February 2020 by Say004 (talk | contribs)

This page will be updated with Python examples related to the lectures and labs. We will add more examples after each lab has ended. The first examples will use Python's RDFlib. We will introduce other relevant libraries later.

Lecture 1: Python, RDFlib, and PyCharm

Printing the triples of the Graph in a readable way

# The turtle format has the purpose of being more readable for humans. 

Coding Tasks Lab 1

from rdflib import Graph, Namespace, URIRef, BNode, Literal
from rdflib.namespace import RDF, FOAF, XSD

g = Graph()
ex = Namespace("")

g.add((ex.Cade, ex.married, ex.Mary))
g.add((ex.France,, ex.Paris))
g.add((ex.Cade, ex.age, Literal("27", datatype=XSD.integer)))
g.add((ex.Mary, ex.age, Literal("26", datatype=XSD.integer)))
g.add((ex.Mary, ex.interest, ex.Hiking))
g.add((ex.Mary, ex.interest, ex.Chocolate))
g.add((ex.Mary, ex.interest, ex.Biology))
g.add((ex.Mary, RDF.type, ex.Student))
g.add((ex.Paris, RDF.type, ex.City))
g.add((ex.Paris, ex.locatedIn, ex.France))
g.add((ex.Cade, ex.characteristic, ex.Kind))
g.add((ex.Mary, ex.characteristic, ex.Kind))
g.add((ex.Mary, RDF.type, FOAF.Person))
g.add((ex.Cade, RDF.type, FOAF.Person))

Lab 1/2 - Different ways of Making an Address

from rdflib import Graph, Namespace, URIRef, BNode, Literal
from rdflib.namespace import RDF, FOAF, XSD

g = Graph()
ex = Namespace("")

# How to represent the address of Cade Tracey. From probably the worst solution to the best.

# Solution 1 -
# Make the entire address into one Literal. However, Generally we want to seperate each part of an address into their own triples. This is useful for instance if we want to find only the streets where people live. 

g.add((ex.Cade_Tracey, ex.livesIn, Literal("1516_Henry_Street, Berkeley, California 94709, USA")))

# Solution 2 - 
# Seperate the different pieces information into their own triples

g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
g.add((ex.Cade_tracey,, Literal("Berkeley")))
g.add((ex.Cade_tracey, ex.state, Literal("California")))
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey,, Literal("USA")))

# Solution 3 - Some parts of the addresses can make more sense to be resources than Literals.
# Larger concepts like a city or state are typically represented as resources rather than Literals, but this is not necesarilly a requirement in the case that you don't intend to say more about them. 

g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
g.add((ex.Cade_tracey,, ex.Berkeley))
g.add((ex.Cade_tracey, ex.state, ex.California))
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey,, ex.USA))

# Solution 4 
# Grouping of the information into an Address. We can Represent the address concept with its own URI OR with a Blank Node. 
# One advantage of this is that we can easily remove the entire address, instead of removing each individual part of the address. 
# Solution 4 or 5 is how I would recommend to make addresses. Here, ex.CadeAddress could also be called something like ex.address1 or so on, if you want to give each address a unique ID. 

# Address URI - CadeAdress

g.add((ex.Cade_Tracey, ex.address, ex.CadeAddress))
g.add((ex.CadeAddress, RDF.type, ex.Address))
g.add((ex.CadeAddress, ex.street, Literal("1516 Henry Street")))
g.add((ex.CadeAddress,, ex.Berkeley))
g.add((ex.CadeAddress, ex.state, ex.California))
g.add((ex.CadeAddress, ex.postalCode, Literal("94709")))
g.add((ex.CadeAddress,, ex.USA))

# OR

# Blank node for Address.  
address = BNode()
g.add((ex.Cade_Tracey, ex.address, address))
g.add((address, RDF.type, ex.Address))
g.add((address, ex.street, Literal("1516 Henry Street", datatype=XSD.string)))
g.add((address,, ex.Berkeley))
g.add((address, ex.state, ex.California))
g.add((address, ex.postalCode, Literal("94709", datatype=XSD.string)))
g.add((address,, ex.USA))

# Solution 5 using existing vocabularies for address 

# (in this case from 
# Also using existing ontology for places like California. (like from

schema = ""
dbp = ""

g.add((ex.Cade_Tracey, schema.address, ex.CadeAddress))
g.add((ex.CadeAddress, RDF.type, schema.PostalAddress))
g.add((ex.CadeAddress, schema.streetAddress, Literal("1516 Henry Street")))
g.add((ex.CadeAddress, schema.addresCity, dbp.Berkeley))
g.add((ex.CadeAddress, schema.addressRegion, dbp.California))
g.add((ex.CadeAddress, schema.postalCode, Literal("94709")))
g.add((ex.CadeAddress, schema.addressCountry, dbp.United_States))

Lab 2 - Collection Example

from rdflib import Graph, Namespace
from rdflib.collection import Collection

# Sometimes we want to add many objects or subjects for the same predicate at once. 
# In these cases we can use Collection() to save some time.
# In this case I want to add all countries that Emma has visited at once.

b = BNode()
g.add((ex.Emma, ex.visit, b))
Collection(g, b,
    [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])

# OR

g.add((ex.Emma, ex.visit, ex.EmmaVisits))
Collection(g, ex.EmmaVisits,
    [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])

Lab 3 - SPARQL queries from the lecture

    ?s ?p ?o .
PREFIX rdf: <>

    ?s rdf:type ?t .
PREFIX owl: <>
    ?s owl:sameAs ?o2 . 
    ?s owl:sameAs ?o .
    FILTER(REGEX(STR(?o), "^http://www\\.", "s"))
    BIND(URI(REPLACE(STR(?o), "^http://www\\.", "http://", "s")) AS ?o2)

Lab 3 - SPARQL - Select all contents of lists (rdfllib.Collection)

# rdflib.Collection has a different interntal structure so it requires a slightly more advance query. Here I am selecting all places that Emma has visited.

PREFIX ex:   <>
PREFIX rdf: <>

SELECT ?visit
  ex:Emma ex:visit/rdf:rest*/rdf:first ?visit

Lab 3 - Setting a Blazegraph connection and two SELECT examples

from SPARQLWrapper import SPARQLWrapper, JSON

# This creates a server connection to the same URL that contains the graphic interface for Blazegraph. 
# You also need to add "sparql" to end of the URL like below.

sparql = SPARQLWrapper("")

# SELECT all triples in the database.

    ?s ?p ?o.
results = sparql.query().convert()

for result in results["results"]["bindings"]:

# SELECT all interests of Cade

    PREFIX ex: <>
    ex:Cade ex:interest ?interest.
results = sparql.query().convert()

for result in results["results"]["bindings"]:

INFO216, UiB, 2017-2020. All code examples are CC0.