Lab: More OWL: Difference between revisions
m (Updated link to lecture notes) |
No edit summary |
||
Line 127: | Line 127: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
==Scenarios from previous labs== | <!-- ==Scenarios from previous labs== --> |
Revision as of 08:08, 20 April 2021
Lab 12: More OWL
Topics
OWL ontology programming with RDFlib.
Tutorial
Classes and methods
In an earlier lab, you have already used these OWL concepts:
- (sameAs, equivalentClass, equivalentProperty, differentFrom, disjointWith, inverseOf)
- (ReflexiveProperty, IrreflexiveProperty, SymmetricProperty, AsymmetricProperty, TransitiveProperty, FunctionalProperty, InverseFunctionalProperty),
In this lab you will mostly use the following OWL terms:
- (oneOf, unionOf, intersectionOf. complementOf)
- (Restriction, onProperty)
- (someValuesFrom, allValuesFrom, hasValue)
- (cardinality, minCardinality, maxCardinality)
- (qualifiedCardinality, minQualifiedCardinality, maxQualifiedCardinality, onClass)
OWL Restrictions
Most of the tasks today involve restrictions.
I Recommend refreshing your memories on restrictions and complex classes from the lecture notes When solving the tasks look at the notes, find the relevant OWL term/s, and try to use the same principles in python code.
Down below is an example solution of the first task: "anyone who is a graduate has at least one degree". It looks complicated, but once you understand it, the other tasks follow a similar pattern. In short: I create a blank node that is an OWL.restriction on the ex.degree property. The restriction in question is a minCardinality restriction with the value 1. (e.g "at least one") Then I create another blank node that is for a List of all the criteria that makes a person a Graduate. In this case I say that a Graduate is the intersection of a Person and the restriction we created earlier. Collection is essentially used to create lists and everything between [] is what is in the list (the intersections).
# anyone who is a graduate has at least one degree
br = BNode()
g.add((br, RDF.type, OWL.Restriction))
g.add((br, OWL.onProperty, ex.degree))
g.add((br, OWL.minCardinality, Literal(1)))
bi = BNode()
Collection(g, bi, [ex.Person, br])
g.add((ex.Graduate, OWL.intersectionOf, bi))
Tasks
Create or Extend a previous graph into an ontology that expresses the following using concepts from OWL (and some from RDF/RDFS):
- anyone who is a graduate has at least one degree
- anyone who is a university graduate has at least one degree from a university
- a grade is either an A, B, C, D, E or F
- a straight A student is a student that has only A grades
- a graduate has no F grades
- a student has a unique student number
- each student has exactly one average grade
- a course is either a bachelor, a master or a Ph.D course
- a bachelor student takes only bachelor courses
- a masters student takes only master courses and at most one bachelor course
- a Ph.D student takes only Ph.D and at most two masters courses
- a Ph.D. student cannot take a bachelor course
Write each of the above statements as python code using RDFlib and OWL.
Code to get started
import owlrl
from rdflib import Graph, Literal, Namespace, BNode
from rdflib.namespace import RDF, OWL, RDFS
from rdflib.collection import Collection
g = Graph()
ex = Namespace("http://example.org/")
g.bind("ex", ex)
g.bind("owl", OWL)
# anyone who is a graduate has at least one degree
br = BNode()
g.add((br, RDF.type, OWL.Restriction))
g.add((br, OWL.onProperty, ex.degree))
g.add((br, OWL.minCardinality, Literal(1)))
bi = BNode()
Collection(g, bi, [ex.Person, br])
g.add((ex.Graduate, OWL.intersectionOf, bi))
# Continue here with the other statements:
print(g.serialize(format="turtle").decode())
If You Have More Time
Populate the ontology with data. E.g like:
g.add((ex.Cade, RDF.type, ex.Graduate))
g.add((ex.Cade, ex.grade, ex.A))
Use owlrl like we did in lab 8 to infer additional triples. IMPORANT: It seems owlrl is unable to reason with OWL Restrictions and perhaps other concepts as well. There is a python library for better OWL reasoning called Owlready if you want to reason with restrictions. Below I print the ontology before and after the reasoning.
What has changed about e.g Cade after using owlrl?
# # Write owl file before any reasoned triples
g.serialize(destination="owl1.ttl", format="turtle")
# Infer additional triples
owl_reasoner = owlrl.CombinedClosure.RDFS_OWLRL_Semantics(g, False, False, False)
owl_reasoner.closure()
owl_reasoner.flush_stored_triples()
# Write owl file that includes reasoned triples
g.serialize(destination="owl2.ttl", format="turtle")