SPARQL Examples: Difference between revisions
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
PREFIX th: <http://i2s.uib.no/kg4news/theme/> | PREFIX th: <http://i2s.uib.no/kg4news/theme/> | ||
PREFIX ex: <http://example.org/> | PREFIX ex: <http://example.org/> | ||
PREFIX xml: <http://www.w3.org/XML/1998/namespace> | PREFIX xml: <http://www.w3.org/XML/1998/namespace> | ||
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> | PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> | ||
===select all triplets in graph=== | ===select all triplets in graph=== | ||
SELECT ?s ?p ?o | SELECT ?s ?p ?o | ||
WHERE { | WHERE { | ||
?s ?p ?o . | ?s ?p ?o . | ||
} | } | ||
===select the interestes of Cade=== | ===select the interestes of Cade=== | ||
SELECT ?cadeInterest | SELECT ?cadeInterest | ||
WHERE { | WHERE { | ||
ex:Cade ex:interest ?cadeInterest . | ex:Cade ex:interest ?cadeInterest . | ||
} | } | ||
===select the country and city where Emma lives=== | ===select the country and city where Emma lives=== | ||
SELECT ?emmaCity ?emmaCountry | SELECT ?emmaCity ?emmaCountry | ||
WHERE { | WHERE { | ||
ex:Emma ex:address ?address . | ex:Emma ex:address ?address . | ||
?address ex:city ?emmaCity . | ?address ex:city ?emmaCity . | ||
?address ex:country ?emmaCountry . | ?address ex:country ?emmaCountry . | ||
} | } | ||
===select the people who are over 26 years old=== | ===select the people who are over 26 years old=== | ||
SELECT ?person ?age | SELECT ?person ?age | ||
WHERE { | WHERE { | ||
?person ex:age ?age . | ?person ex:age ?age . | ||
FILTER(?age > 26) . | FILTER(?age > 26) . | ||
} | } | ||
===select people who graduated with Bachelor=== | ===select people who graduated with Bachelor=== | ||
SELECT ?person ?degree | SELECT ?person ?degree | ||
WHERE { | WHERE { | ||
?person ex:degree ?degree . | ?person ex:degree ?degree . | ||
?degree ex:degreeLevel "Bachelor" . | ?degree ex:degreeLevel "Bachelor" . | ||
} | } | ||
===delete cades photography interest=== | ===delete cades photography interest=== | ||
DELETE DATA | DELETE DATA | ||
{ | { | ||
ex:Cade ex:interest ex:Photography . | ex:Cade ex:interest ex:Photography . | ||
} | } | ||
===delete and insert university of valencia=== | ===delete and insert university of valencia=== | ||
DELETE { ?s ?p ex:University_of_Valencia } | DELETE { ?s ?p ex:University_of_Valencia } | ||
INSERT { ?s ?p ex:Universidad_de_Valencia } | INSERT { ?s ?p ex:Universidad_de_Valencia } | ||
WHERE { ?s ?p ex:University_of_Valencia } | WHERE { ?s ?p ex:University_of_Valencia } | ||
===check if the deletion worked=== | ===check if the deletion worked=== | ||
SELECT ?s ?o2 | SELECT ?s ?o2 | ||
WHERE { | WHERE { | ||
?s ex:degree ?o . | ?s ex:degree ?o . | ||
?o ex:degreeSource ?o2 . | ?o ex:degreeSource ?o2 . | ||
Line 85: | Line 85: | ||
===insert Sergio=== | ===insert Sergio=== | ||
INSERT DATA { | INSERT DATA { | ||
ex:Sergio a foaf:Person ; | ex:Sergio a foaf:Person ; | ||
ex:address [ a ex:Address ; | ex:address [ a ex:Address ; | ||
Line 105: | Line 105: | ||
===describe Sergio=== | ===describe Sergio=== | ||
DESCRIBE ex:Sergio ?o | DESCRIBE ex:Sergio ?o | ||
WHERE { | WHERE { | ||
ex:Sergio ?p ?o . | ex:Sergio ?p ?o . | ||
?o ?p2 ?o2 . | ?o ?p2 ?o2 . | ||
Line 113: | Line 113: | ||
===construct that any city is in the country in an address=== | ===construct that any city is in the country in an address=== | ||
CONSTRUCT {?city ex:locatedIn ?country} | CONSTRUCT {?city ex:locatedIn ?country} | ||
Where { | Where { | ||
?s rdf:type ex:Address . | ?s rdf:type ex:Address . | ||
?s ex:city ?city . | ?s ex:city ?city . | ||
Line 124: | Line 124: | ||
?s rdf:type ss:Paper . | ?s rdf:type ss:Paper . | ||
?s ?p ?o . | ?s ?p ?o . | ||
} LIMIT 100 | |||
===Explain all types and properties=== | ===Explain all types and properties=== |
Revision as of 20:07, 14 February 2022
This page will be updated with SPARQL examples as the course progresses.
SPARQL Examples from Session 3: SPARQL
Prefixes used
The examples below will assume that these are in place.
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX dc: <http://purl.org/dc/terms/> PREFIX bibo: <http://purl.org/ontology/bibo/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX skos: <http://www.w3.org/2004/02/skos/core#> PREFIX ss: <http://semanticscholar.org/> PREFIX kg: <http://i2s.uib.no/kg4news/> PREFIX sp: <http://i2s.uib.no/kg4news/science-parse/> PREFIX th: <http://i2s.uib.no/kg4news/theme/>
PREFIX ex: <http://example.org/> PREFIX xml: <http://www.w3.org/XML/1998/namespace> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select all triplets in graph
SELECT ?s ?p ?o WHERE { ?s ?p ?o . }
select the interestes of Cade
SELECT ?cadeInterest WHERE { ex:Cade ex:interest ?cadeInterest . }
select the country and city where Emma lives
SELECT ?emmaCity ?emmaCountry WHERE { ex:Emma ex:address ?address . ?address ex:city ?emmaCity . ?address ex:country ?emmaCountry . }
select the people who are over 26 years old
SELECT ?person ?age WHERE { ?person ex:age ?age . FILTER(?age > 26) . }
select people who graduated with Bachelor
SELECT ?person ?degree WHERE { ?person ex:degree ?degree . ?degree ex:degreeLevel "Bachelor" . }
delete cades photography interest
DELETE DATA { ex:Cade ex:interest ex:Photography . }
delete and insert university of valencia
DELETE { ?s ?p ex:University_of_Valencia } INSERT { ?s ?p ex:Universidad_de_Valencia } WHERE { ?s ?p ex:University_of_Valencia }
check if the deletion worked
SELECT ?s ?o2 WHERE { ?s ex:degree ?o . ?o ex:degreeSource ?o2 . }
insert Sergio
INSERT DATA { ex:Sergio a foaf:Person ; ex:address [ a ex:Address ; ex:city ex:Valenciay ; ex:country ex:Spain ; ex:postalCode "46021"^^xsd:string ; ex:state ex:California ; ex:street "4_Carrer_del_Serpis"^^xsd:string ] ; ex:degree [ ex:degreeField ex:Computer_science ; ex:degreeLevel "Master"^^xsd:string ; ex:degreeSource ex:University_of_Valencia ; ex:year "2008"^^xsd:gYear ] ; ex:expertise ex:Big_data, ex:Semantic_technologies, ex:Machine_learning; foaf:name "Sergio_Pastor"^^xsd:string .
}
describe Sergio
DESCRIBE ex:Sergio ?o WHERE { ex:Sergio ?p ?o . ?o ?p2 ?o2 . }
construct that any city is in the country in an address
CONSTRUCT {?city ex:locatedIn ?country} Where { ?s rdf:type ex:Address . ?s ex:city ?city . ?s ex:country ?country. }
SELECT DISTINCT ?p WHERE { ?s rdf:type ss:Paper . ?s ?p ?o . } LIMIT 100
Explain all types and properties
SELECT ?pt ?e WHERE { ?pt rdfs:comment ?e . } LIMIT 100
List main papers
SELECT * WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . }
The data are available in this Blazegraph triple store: http://sandbox.i2s.uib.no , but you may need to be inside the UiB network (or on VPN.)
List properties
SELECT DISTINCT ?p WHERE { ?s ?p ?o . } LIMIT 100
List types
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT DISTINCT ?t WHERE { ?s rdf:type ?t . } LIMIT 100
List authors
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT DISTINCT ?p WHERE { ?s rdf:type foaf:Person . ?s ?p ?o . } LIMIT 100
Add this to show datatypes!
BIND ( DATATYPE(?year) AS ?type )
Add this to only show years with the right type.
FILTER ( DATATYPE(?year) = xsd:gYear )
Group and count main papers by year
SELECT ?year (COUNT(?paper) AS ?count) WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) } GROUP BY ?year
Add this to order the results
ORDER BY ?year
Add this to order and only show years with more than 5 papers.
HAVING (?count > 5) ORDER BY DESC(?count)
Show papers
SELECT ?paper ?year WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) }
Change last lines to show papers without an xsd:gYear too.
OPTIONAL { ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) }
Alternative values for variables
SELECT ?p ?n ?year WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor ?a . ?a foaf:name ?n . ?p dc:date ?year . FILTER ( CONTAINS( ?n, ?str ) ) FILTER ( CONTAINS( STR(?year), ?yr) ) VALUES ?str { "Andreas" "David" } VALUES ?yr { "2020" "2019" } }
Property paths (composite properties)
This query:
SELECT ?p ?n WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor ?c . ?c foaf:name ?n . }
Can be simplified by eliminating ?c:
SELECT ?p ?n WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor / foaf:name ?n . }
Can be further simplified by first reversing rdf:type:
SELECT ?p ?n WHERE { kg:MainPaper ^rdf:type ?p . ?p dc:contributor / foaf:name ?n . }
...and the eliminating ?p:
SELECT ?n WHERE { kg:MainPaper ^rdf:type / dc:contributor / foaf:name ?n . }
Retrieve titles of papers that mention SPARQL
Get papers with topics labelled "SPARQL":
SELECT ?t WHERE { ?t ^dc:title / dc:subject / skos:prefLabel "SPARQL" . }
Some labels also go via a theme:
SELECT ?t WHERE { ?t ^dc:title / dc:subject / th:theme / skos:prefLabel "SPARQL" . }
We can get both using a path with an optional element (the '?'):
SELECT ?t WHERE { ?t ^dc:title / dc:subject / th:theme? / skos:prefLabel "SPARQL" . }
Using an external SPARQL endpoint
We limit to a single label to avoid time-outs and rate limitations:
SELECT ?a ?n ?r WHERE { ?a rdf:type ss:Topic . ?a skos:prefLabel ?n . FILTER ( ?n = "SPARQL" ) BIND ( STRLANG( ?n, "en" ) AS ?n2 ) SERVICE <https://dbpedia.org/sparql> { ?r rdfs:label ?n2 . } } LIMIT 1
Insert 4-digit years for all main papers
Main papers that do not have an xsd:gYear:
SELECT * WHERE { ?p rdf:type kg:MainPaper . ?p dc:date ?d . FILTER ( DATATYPE(?d) = xsd:gYear ) }
Show the datatypes:
SELECT * WHERE { ?p rdf:type kg:MainPaper . ?p dc:date ?d . FILTER ( DATATYPE(?d) = xsd:dateTime ) BIND ( year( ?d ) AS ?dt ) }
Insert 4-digit years:
INSERT { ?paper dc:date ?year } WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?date . FILTER( DATATYPE(?date) != xsd:gYear ) BIND ( YEAR(?date) AS ?year ) }
(Actually, these years are xsd:integer- s, not quite xsd:gYear-s.)
SPARQL Examples from Session 7: RDFS
Turn on inference!
Make sure inference is on in your triple store, or that you compute closures if you run this in Python with rdflib and OWL-RL.
In Blazegraph, create a new "Namespace" with the "Inference" box checked. Remember to "Use" the new namespace.
In Python, install the OWL-RL package (pip install owlrl). Explicitly compute RDFS closure like this:
import owlrl.RDFSClosure ... rdfs = owlrl.RDFSClosure.RDFS_Semantics(g, False, False, False) rdfs.closure() rdfs.flush_stored_triples()
rdfs:subClassOf entailment
Update:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX kg: <http://i2s.uib.no/kg4news/> INSERT DATA { kg:TimBernersLee rdf:type kg:Author . kg:Author rdfs:subClassOf foaf:Person . }
Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX kg: <http://i2s.uib.no/kg4news/> ASK { kg:TimBernersLee rdf:type foaf:Person . }
rdfs:domain entailment
Update:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dcterm: <http://purl.org/dc/terms/> PREFIX kg: <http://i2s.uib.no/kg4news/> INSERT DATA { kg:TimBernersLee rdf:type kg:Author . kg:TheSemanticWeb dcterm:contributor kg:TimBernersLee . dcterm:contributor rdfs:domain kg:Paper . }
Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dcterm: <http://purl.org/dc/terms/> PREFIX kg: <http://i2s.uib.no/kg4news/> ASK { kg:TheSemanticWeb rdf:type kg:Paper . }
OWL Ontologies
The following files contain an ontology for the knowledge graph used in this page:
- Small: File:small-kg4news-ontology.txt
- Full: File:kg4news-ontology.txt
Rename them from '.txt.' to '.ttl' after you download them.
You can
- view the ontologies online using WebVOWL or
- download the Protegé-OWL ontology editor.
-->