Lab Solutions: Difference between revisions
Line 5: | Line 5: | ||
==Lecture 1: Introduction to KGs== | ==Lecture 1: Introduction to KGs== | ||
Turtle example: | Turtle example: | ||
<syntaxhighlight> | <syntaxhighlight lang="Turtle"> | ||
@prefix ex: <http://example.org/> . | @prefix ex: <http://example.org/> . | ||
ex:Roger_Stone | ex:Roger_Stone |
Revision as of 15:06, 31 January 2023
This page will be updated with Python examples related to the labs as the course progresses.
Examples from the lectures
Lecture 1: Introduction to KGs
Turtle example:
@prefix ex: <http://example.org/> .
ex:Roger_Stone
ex:name "Roger Stone" ;
ex:occupation ex:lobbyist ;
ex:significant_person ex:Donald_Trump .
ex:Donald_Trump
ex:name "Donald Trump" .
Lecture 2: RDF
Blank nodes for anonymity, or when we have not decided on a URI:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX) # this is why the line '@prefix ex: <http://example.org/> .'
# and the 'ex.' prefix are used when we print out Turtle later
robertMueller = BNode()
g.add((robertMueller, RDF.type, EX.Human))
g.add((robertMueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((robertMueller, EX.position_held, Literal('Director of the Federal Bureau of Investigation', lang='en')))
print(g.serialize(format='turtle'))
Blank nodes used to group related properties:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
# This is a task in Exercise 2
print(g.serialize(format='turtle'))
Literals:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
g.add((EX.Robert_Mueller, RDF.type, EX.Human))
g.add((EX.Robert_Mueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((EX.Robert_Mueller, FOAF.name, Literal('رابرت مولر', lang='fa')))
g.add((EX.Robert_Mueller, DC.description, Literal('sixth director of the FBI', datatype=XSD.string)))
g.add((EX.Robert_Mueller, EX.start_time, Literal(2001, datatype=XSD.integer)))
print(g.serialize(format='turtle'))
Alternative container (open):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
muellerReportArchives = BNode()
g.add((muellerReportArchives, RDF.type, RDF.Alt))
archive1 = 'https://archive.org/details/MuellerReportVolume1Searchable/' \
'Mueller%20Report%20Volume%201%20Searchable/'
archive2 = 'https://edition.cnn.com/2019/04/18/politics/full-mueller-report-pdf/index.html'
archive3 = 'https://www.politico.com/story/2019/04/18/mueller-report-pdf-download-text-file-1280891'
g.add((muellerReportArchives, RDFS.member, Literal(archive1, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive2, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive3, datatype=XSD.anyURI)))
g.add((EX.Mueller_Report, RDF.type, FOAF.Document))
g.add((EX.Mueller_Report, DC.contributor, EX.Robert_Mueller))
g.add((EX.Mueller_Report, SCHEMA.archivedAt, muellerReportArchives))
print(g.serialize(format='turtle'))
Sequence container (open):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
donaldTrumpSpouses = BNode()
g.add((donaldTrumpSpouses, RDF.type, RDF.Seq))
g.add((donaldTrumpSpouses, RDF._1, EX.IvanaTrump))
g.add((donaldTrumpSpouses, RDF._2, EX.MarlaMaples))
g.add((donaldTrumpSpouses, RDF._3, EX.MelaniaTrump))
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
print(g.serialize(format='turtle'))
Collection (closed list):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
from rdflib.collection import Collection
g = Graph()
g.bind('ex', EX)
donaldTrumpSpouses = BNode()
Collection(g, donaldTrumpSpouses, [
EX.IvanaTrump, EX.MarlaMaples, EX.MelaniaTrump
])
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
print(g.serialize(format='turtle'))
g.serialize(destination='s02_Donald_Trump_spouses_list.ttl', format='turtle')
print(g.serialize(format='turtle'))
Example lab solutions
Getting started (Lab 1)
from rdflib import Graph, Namespace
g = Graph()
ex = Namespace('http://example.org/')
g.bind("ex", ex)
#The Mueller Investigation was lead by Robert Mueller.
g.add((ex.Mueller_Investigation, ex.leadBy, ex.Robert_Muller))
#It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, and Roger Stone.
g.add((ex.Mueller_Investigation, ex.involved, ex.Paul_Manafort))
g.add((ex.Mueller_Investigation, ex.involved, ex.Rick_Gates))
g.add((ex.Mueller_Investigation, ex.involved, ex.George_Papadopoulos))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Flynn))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Cohen))
g.add((ex.Mueller_Investigation, ex.involved, ex.Roger_Stone))
# --- Paul Manafort ---
#Paul Manafort was business partner of Rick Gates.
g.add((ex.Paul_Manafort, ex.businessManager, ex.Rick_Gates))
# He was campaign chairman for Trump
g.add((ex.Paul_Manafort, ex.campaignChairman, ex.Donald_Trump))
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.Paul_Manafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.ForeignLobbying))
# He was convicted for bank and tax fraud.
g.add((ex.Paul_Manafort, ex.convictedFor, ex.BankFraud))
g.add((ex.Paul_Manafort, ex.convictedFor, ex.TaxFraud))
# He pleaded guilty to conspiracy.
g.add((ex.Paul_Manafort, ex.pleadGuiltyTo, ex.Conspiracy))
# He was sentenced to prison.
g.add((ex.Paul_Manafort, ex.sentencedTo, ex.Prison))
# He negotiated a plea agreement.
g.add((ex.Paul_Manafort, ex.negoiated, ex.PleaBargain))
# --- Rick Gates ---
#Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
#He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
#Use the serialize method to write out the model in different formats on screen
print(g.serialize(format="ttl"))
# g.serialize("lab1.ttl", format="ttl") #or to file
#Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo : ]:
print(subject, ex.pleadGuiltyTo, object)
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week
#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil
def graphToImage(graph):
data = {"rdf":graph, "from":"ttl", "to":"png"}
link = "http://www.ldf.fi/service/rdf-grapher"
response = requests.get(link, params = data, stream=True)
# print(response.content)
print(response.raw)
with open("lab1.png", "wb") as fil:
shutil.copyfileobj(response.raw, fil)
graph = g.serialize(format="ttl")
graphToImage(graph)