Lab Solutions: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 228: | Line 228: | ||
<syntaxhighlight> | <syntaxhighlight> | ||
from rdflib import Graph, URIRef, Namespace, Literal, XSD, BNode | from rdflib import Graph, URIRef, Namespace, Literal, XSD, BNode | ||
from rdflib.collection import Collection | from rdflib.collection import Collection | ||
Revision as of 15:48, 31 January 2023
This page will be updated with Python examples related to the labs as the course progresses.
Examples from the lectures
Lecture 1: Introduction to KGs
Turtle example:
@prefix ex: <http://example.org/> .
ex:Roger_Stone
ex:name "Roger Stone" ;
ex:occupation ex:lobbyist ;
ex:significant_person ex:Donald_Trump .
ex:Donald_Trump
ex:name "Donald Trump" .
Lecture 2: RDF
Blank nodes for anonymity, or when we have not decided on a URI:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX) # this is why the line '@prefix ex: <http://example.org/> .'
# and the 'ex.' prefix are used when we print out Turtle later
robertMueller = BNode()
g.add((robertMueller, RDF.type, EX.Human))
g.add((robertMueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((robertMueller, EX.position_held, Literal('Director of the Federal Bureau of Investigation', lang='en')))
print(g.serialize(format='turtle'))
Blank nodes used to group related properties:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
# This is a task in Exercise 2
print(g.serialize(format='turtle'))
Literals:
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
g.add((EX.Robert_Mueller, RDF.type, EX.Human))
g.add((EX.Robert_Mueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((EX.Robert_Mueller, FOAF.name, Literal('رابرت مولر', lang='fa')))
g.add((EX.Robert_Mueller, DC.description, Literal('sixth director of the FBI', datatype=XSD.string)))
g.add((EX.Robert_Mueller, EX.start_time, Literal(2001, datatype=XSD.integer)))
print(g.serialize(format='turtle'))
Alternative container (open):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
muellerReportArchives = BNode()
g.add((muellerReportArchives, RDF.type, RDF.Alt))
archive1 = 'https://archive.org/details/MuellerReportVolume1Searchable/' \
'Mueller%20Report%20Volume%201%20Searchable/'
archive2 = 'https://edition.cnn.com/2019/04/18/politics/full-mueller-report-pdf/index.html'
archive3 = 'https://www.politico.com/story/2019/04/18/mueller-report-pdf-download-text-file-1280891'
g.add((muellerReportArchives, RDFS.member, Literal(archive1, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive2, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive3, datatype=XSD.anyURI)))
g.add((EX.Mueller_Report, RDF.type, FOAF.Document))
g.add((EX.Mueller_Report, DC.contributor, EX.Robert_Mueller))
g.add((EX.Mueller_Report, SCHEMA.archivedAt, muellerReportArchives))
print(g.serialize(format='turtle'))
Sequence container (open):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
donaldTrumpSpouses = BNode()
g.add((donaldTrumpSpouses, RDF.type, RDF.Seq))
g.add((donaldTrumpSpouses, RDF._1, EX.IvanaTrump))
g.add((donaldTrumpSpouses, RDF._2, EX.MarlaMaples))
g.add((donaldTrumpSpouses, RDF._3, EX.MelaniaTrump))
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
print(g.serialize(format='turtle'))
Collection (closed list):
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
EX = Namespace('http://example.org/')
g = Graph()
g.bind('ex', EX)
from rdflib.collection import Collection
g = Graph()
g.bind('ex', EX)
donaldTrumpSpouses = BNode()
Collection(g, donaldTrumpSpouses, [
EX.IvanaTrump, EX.MarlaMaples, EX.MelaniaTrump
])
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
print(g.serialize(format='turtle'))
g.serialize(destination='s02_Donald_Trump_spouses_list.ttl', format='turtle')
print(g.serialize(format='turtle'))
Example lab solutions
Getting started (Lab 1)
from rdflib import Graph, Namespace
g = Graph()
ex = Namespace('http://example.org/')
g.bind("ex", ex)
#The Mueller Investigation was lead by Robert Mueller.
g.add((ex.Mueller_Investigation, ex.leadBy, ex.Robert_Muller))
#It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, and Roger Stone.
g.add((ex.Mueller_Investigation, ex.involved, ex.Paul_Manafort))
g.add((ex.Mueller_Investigation, ex.involved, ex.Rick_Gates))
g.add((ex.Mueller_Investigation, ex.involved, ex.George_Papadopoulos))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Flynn))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Cohen))
g.add((ex.Mueller_Investigation, ex.involved, ex.Roger_Stone))
# --- Paul Manafort ---
#Paul Manafort was business partner of Rick Gates.
g.add((ex.Paul_Manafort, ex.businessManager, ex.Rick_Gates))
# He was campaign chairman for Trump
g.add((ex.Paul_Manafort, ex.campaignChairman, ex.Donald_Trump))
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.Paul_Manafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.ForeignLobbying))
# He was convicted for bank and tax fraud.
g.add((ex.Paul_Manafort, ex.convictedFor, ex.BankFraud))
g.add((ex.Paul_Manafort, ex.convictedFor, ex.TaxFraud))
# He pleaded guilty to conspiracy.
g.add((ex.Paul_Manafort, ex.pleadGuiltyTo, ex.Conspiracy))
# He was sentenced to prison.
g.add((ex.Paul_Manafort, ex.sentencedTo, ex.Prison))
# He negotiated a plea agreement.
g.add((ex.Paul_Manafort, ex.negoiated, ex.PleaBargain))
# --- Rick Gates ---
#Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
#He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
#Use the serialize method to write out the model in different formats on screen
print(g.serialize(format="ttl"))
# g.serialize("lab1.ttl", format="ttl") #or to file
#Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo : ]:
print(subject, ex.pleadGuiltyTo, object)
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week
#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil
def graphToImage(graph):
data = {"rdf":graph, "from":"ttl", "to":"png"}
link = "http://www.ldf.fi/service/rdf-grapher"
response = requests.get(link, params = data, stream=True)
# print(response.content)
print(response.raw)
with open("lab1.png", "wb") as fil:
shutil.copyfileobj(response.raw, fil)
graph = g.serialize(format="ttl")
graphToImage(graph)
RDF programming with RDFlib (Lab 2)
from rdflib import Graph, URIRef, Namespace, Literal, XSD, BNode
from rdflib.collection import Collection
g = Graph()
g.parse("lab1.ttl", format="ttl") #Retrives the triples from lab 1
ex = Namespace('http://example.org/')
# --- Michael Cohen ---
#Michael Cohen was Donald Trump's attorney.
g.add((ex.Michael_Cohen, ex.attorneyTo, ex.Donald_Trump))
#He pleaded guilty to lying to the FBI.
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))
# --- Michael Flynn ---
#Michael Flynn was adviser to Trump.
g.add((ex.Michael_Flynn, ex.adviserTo, ex.Donald_Trump))
#He pleaded guilty to lying to the FBI.
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
# He negotiated a plea agreement.
g.add((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))
#How can you modify your knowledge graph to account for the different lying?
#Remove these to not have duplicates
g.remove((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.remove((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))
# --- Michael Flynn ---
FlynnLying = BNode()
g.add((FlynnLying, ex.crime, ex.LyingToFBI))
g.add((FlynnLying, ex.pleadGulityOn, Literal("2017-12-1", datatype=XSD.date)))
g.add((FlynnLying, ex.liedAbout, Literal("His communications with a former Russian ambassador during the presidential transition", datatype=XSD.string)))
g.add((FlynnLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, FlynnLying))
# --- Rick Gates ---
GatesLying = BNode()
Crimes = BNode()
Charged = BNode()
Collection(g, Crimes, [ex.LyingToFBI, ex.Conspiracy])
Collection(g, Charged, [ex.ForeignLobbying, ex.MoneyLaundering, ex.TaxEvasion])
g.add((GatesLying, ex.crime, Crimes))
g.add((GatesLying, ex.chargedWith, Charged))
g.add((GatesLying, ex.pleadGulityOn, Literal("2018-02-23", datatype=XSD.date)))
g.add((GatesLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, GatesLying))
# --- Michael Cohen ---
CohenLying = BNode()
g.add((CohenLying, ex.crime, ex.LyingToCongress))
g.add((CohenLying, ex.liedAbout, ex.TrumpRealEstateDeal))
g.add((CohenLying, ex.prosecutorsAlleged, Literal("In an August 2017 letter Cohen sent to congressional committees investigating Russian election interference, he falsely stated that the project ended in January 2016", datatype=XSD.string)))
g.add((CohenLying, ex.mullerInvestigationAlleged, Literal("Cohen falsely stated that he had never agreed to travel to Russia for the real estate deal and that he did not recall any contact with the Russian government about the project", datatype=XSD.string)))
g.add((CohenLying, ex.pleadGulityOn, Literal("2018-11-29", datatype=XSD.date)))
g.add((CohenLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, CohenLying))
print(g.serialize(format="ttl"))
#Save (serialize) your graph to a Turtle file.
# g.serialize("lab2.ttl", format="ttl")
#Add a few triples to the Turtle file with more information about Donald Trump.
'''
ex:Donald_Trump ex:address [ ex:city ex:Palm_Beach ;
ex:country ex:United_States ;
ex:postalCode 33480 ;
ex:residence ex:Mar_a_Lago ;
ex:state ex:Florida ;
ex:streetName "1100 S Ocean Blvd"^^xsd:string ] ;
ex:previousAddress [ ex:city ex:Washington_DC ;
ex:country ex:United_States ;
ex:phoneNumber "1 202 456 1414"^^xsd:integer ;
ex:postalCode "20500"^^xsd:integer ;
ex:residence ex:The_White_House ;
ex:streetName "1600 Pennsylvania Ave."^^xsd:string ];
ex:marriedTo ex:Melania_Trump;
ex:fatherTo (ex:Ivanka_Trump ex:Donald_Trump_Jr ex: ex:Tiffany_Trump ex:Eric_Trump ex:Barron_Trump).
'''
#Read (parse) the Turtle file back into a Python program, and check that the new triples are there
def serialize_Graph():
newGraph = Graph()
newGraph.parse("lab2.ttl")
print(newGraph.serialize())
# serialize_Graph() #Don't need this to run until after adding the triples above to the ttl file
#Write a method (function) that starts with Donald Trump prints out a graph depth-first to show how the other graph nodes are connected to him
visited_nodes = set()
def create_Tree(model, nodes):
#Traverse the model breadth-first to create the tree.
global visited_nodes
tree = Graph()
children = set()
visited_nodes |= set(nodes)
for s, p, o in model:
if s in nodes and o not in visited_nodes:
tree.add((s, p, o))
visited_nodes.add(o)
children.add(o)
if o in nodes and s not in visited_nodes:
invp = URIRef(f'{p}_inv') #_inv represents inverse of
tree.add((o, invp, s))
visited_nodes.add(s)
children.add(s)
if len(children) > 0:
children_tree = create_Tree(model, children)
for triple in children_tree:
tree.add(triple)
return tree
def print_Tree(tree, root, indent=0):
#Print the tree depth-first.
print(str(root))
for s, p, o in tree:
if s==root:
print(' '*indent + ' ' + str(p), end=' ')
print_Tree(tree, o, indent+1)
tree = create_Tree(g, [ex.Donald_Trump])
print_Tree(tree, ex.Donald_Trump)