Readings: Difference between revisions

From info216
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
''This page currently shows some of the lectures and readings from the Spring of 2023. It will be updated with materials for 2024 as the course progresses.''


=Textbooks=
=Textbooks=


Main course book (''the whole book is mandatory reading''):
Main course book (''the whole book is mandatory reading''):
* Dean Allemang, James Hendler & Fabien Gandon (2020). '''Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition).''' ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.  
* Hogan, A. et al. (2021). '''Knowledge Graphs.''' Springer. ''Synthesis Lectures on Data, Semantics, and Knowledge'' 22, 1–237, DOI: 10.2200/S01125ED1V01Y202109DSK022, Springer. https://kgbook.org/


Supplementary reading book (''not'' mandatory):
Supplementary books (''not'' mandatory):
* Dean Allemang, James Hendler & Fabien Gandon (2020). '''Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition).''' ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.
* Andreas Blumauer and Helmut Nagy (2020). '''The Knowledge Graph Cookbook - Recipes that Work.''' mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.
* Andreas Blumauer and Helmut Nagy (2020). '''The Knowledge Graph Cookbook - Recipes that Work.''' mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.


Line 19: Line 19:
''Note:'' to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.
''Note:'' to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.


=Lectures (preliminary)=
=Lectures (in progress)=


Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.
Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.
Line 106: Line 106:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/DesignIssues/LinkedData.html Linked Data], Tim Berners-Lee, 2006-07-27.
* [https://www.w3.org/DesignIssues/LinkedData.html Linked Data], Tim Berners-Lee, 2006-07-27.
* [[:File:S04-LOD.pdf Slides from the lecture]]
* [[:File:S04-LOD.pdf | Slides from the lecture]]


Useful materials
Useful materials
Line 112: Line 112:
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]


=Old lectures (2003) - will be updated=
==Lecture 5: Open Knowledge Graphs I==
 
==Lecture 5-6: Open Knowledge Graphs I & II==


Themes:
Themes:
* Important open KGs (LOD datasets)
* Important open KGs (LOD datasets)
** Wikidata
** Wikidata
** DBpedia ''(lecture 5)''
** DBpedia
** GeoNames ''(lecture 5)''
** the GDELT project ''(lecture 5)''
** WordNet ''(lecture 5)''
** BabelNet ''(lecture 5)''
** ConceptNet ''(lecture 5)''


Mandatory readings:
Mandatory readings:
Line 136: Line 129:
*** [http://wiki.dbpedia.org/about About Dbpedia]
*** [http://wiki.dbpedia.org/about About Dbpedia]
*** example: [https://dbpedia.org/resource/Bergen]
*** example: [https://dbpedia.org/resource/Bergen]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]
==Lecture 6: Open Knowledge Graphs II==
Themes:
* Important open KGs (LOD datasets)
** DBpedia ''(continued)''
** GeoNames
** the GDELT project
** WordNet
** BabelNet
** ConceptNet
Mandatory readings:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Important knowledge graphs - and what to read:
** GeoNames (https://www.geonames.org/):
** GeoNames (https://www.geonames.org/):
*** [http://www.geonames.org/about.html About GeoNames]
*** [http://www.geonames.org/about.html About GeoNames]
Line 149: Line 158:
** ConceptNet (http://conceptnet.io)
** ConceptNet (http://conceptnet.io)
*** [http://conceptnet.io ConceptNet - An open, multilingual knowledge graph]
*** [http://conceptnet.io ConceptNet - An open, multilingual knowledge graph]
*  [[:File:S04-S05-OpenKGs.pdf | Slides from the lecture]]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]


Useful materials
Useful materials
Line 168: Line 177:
* Google’s Knowledge Graph
* Google’s Knowledge Graph
* Amazon’s Product Graph
* Amazon’s Product Graph
* (News Hunter’s infrastructure and architecture)
* JSON-LD (video presentation)
* JSON-LD


Mandatory readings:
Mandatory readings:
Line 177: Line 185:
* [https://www.amazon.science/blog/building-product-graphs-automatically Building product graphs automatically], Xin Luna Dong, Amazon (2020).
* [https://www.amazon.science/blog/building-product-graphs-automatically Building product graphs automatically], Xin Luna Dong, Amazon (2020).
* [https://json-ld.org/ JSON for Linking Data]
* [https://json-ld.org/ JSON for Linking Data]
* [[:File:S12-EnterpriseKGs-II.pdf | Slides from the lecture]]
* [[:File:S07-EnterpriseKGs.pdf | Slides from the lecture]]


Supplementary readings:
Supplementary readings:
* Parts 2 and 4 in Blumauer & Nagy's text book (''strongly suggested - this is where Blumauer & Nagy's book is good!'')
* Parts 2 and 4 in Blumauer & Nagy's text book (''strongly suggested - this is where Blumauer & Nagy's book is good!'')
* [[:File:2006.13473.pdf | AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types]]. Example of research paper from Amazon - this is a bit heavy for Bachelor level, but you can have a look :-)
* [[:File:Bosch-LIS.pdf | LIS: A knowledge graph-based line information system]] by Grangel-González, I., Rickart, M., Rudolph, O., & Shah, F. (2023, May). In Proceedings of the European Semantic Web Conference (pp. 591-608). Cham: Springer Nature Switzerland.
* [[:File:2006.13473.pdf | AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types]] by Dong, X. L., He, X., Kan, A., Li, X., Liang, Y., Ma, J., ... & Han, J. (2020, August). In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2724-2734). ''Research paper from Amazon about AutoKnow - this is a bit heavy for Bachelor level, but you can have a look :-)''


==Lecture 8: Rules (SHACL and RDFS)==
==Lecture 8: Rules (SHACL and RDFS)==
Line 216: Line 225:


Mandatory readings:
Mandatory readings:
* Chapter 9-10 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 9-10, 12-13 in Allemang, Hendler & Gandon (3rd edition)
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6 and 9-10
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
* [https://protegeproject.github.io/protege/getting-started/ Protégé-OWL Getting Started]
* [https://protegeproject.github.io/protege/getting-started/ Protégé-OWL Getting Started]
* [[:File:S08-OWL.pdf | Slides from the lecture]]
* [[:File:S09-OWL.pdf | Slides from the lecture]]


Useful materials (cursory):
Useful materials (cursory):
Line 256: Line 265:
*** Its most central 3-6 classes and properties be able to explain its basic structure.  
*** Its most central 3-6 classes and properties be able to explain its basic structure.  
*** It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart.  
*** It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart.  
* [[:File:S09-Vocabularies.pdf | Slides from the lecture]]
* [[:File:S10-Vocabularies.pdf | Slides from the lecture]]


==Lecture 11: Formal ontologies (description logic, OWL-DL)==


Themes:
==Lecture 11: KG embeddings==
* OWL-DL
* Description logic
* Decision problems
 
Mandatory readings:
* Chapters 12-13 in Allemang, Hendler & Gandon (3rd edition)
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6 (same as Lecture 8) and sections 9-10
* [[:File:S10-OWL-DL.pdf | Slides from the lecture]]
 
Useful materials:
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview] (same as Lecture 8)
* [https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/ OWL 2 Quick Reference Guide] (same as Lecture 8)
* [[:File:NardiBrachman-IntroductionToDescriptionLogic.pdf | Nardi & Brachman: Introduction to Description Logics. Chapter 1 in Description Logic Handbook.]]
* [[:File:BaderNutt-BasicDescriptionLogics.pdf | Baader & Nutt: Basic Description Logics. Chapter 2 in Description Logic Handbook.]]
** ''Cursory'', quickly gets mathematical after the introduction. In particular, sections 2.2.2.3-4 about fixpoint semantics apply to TBoxes with cyclic definitions, which we do not consider in this course. We also do not consider the stuff about rules, epistemics, and reasoning from section 2.2.5 on.
 
==Lecture 12: KG embeddings==


Themes:
Themes:
Line 284: Line 275:
* TorchKGE
* TorchKGE


Mandatory readings (preliminary):
Mandatory readings:
* [https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08 Introduction to Machine Learning for Beginners] ([[:file:IntroToMachineLearning.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08 Introduction to Machine Learning for Beginners] ([[:file:IntroToMachineLearning.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
Line 290: Line 281:
* [[:file:S11-GraphEmbeddings.pdf | Slides from the lecture]]
* [[:file:S11-GraphEmbeddings.pdf | Slides from the lecture]]


Supplementary readings (preliminary):
Supplementary readings:
* [[:file:Mikolov_et_al._-_2013_-_Efficient_Estimation_of_Word_Representations_in_Ve.pdf | Mikolov et al’s original word2vec paper]]
* [[:file:Mikolov_et_al._-_2013_-_Efficient_Estimation_of_Word_Representations_in_Ve.pdf | Mikolov et al’s original word2vec paper]]
* [[:file:Bordes_et_al._-_Translating_Embeddings_for_Modeling_Multi-relation.pdf | Bordes et al’s original TransE paper]]
* [[:file:Bordes_et_al._-_Translating_Embeddings_for_Modeling_Multi-relation.pdf | Bordes et al’s original TransE paper]]
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)


==Lecture 13: Wrapping up==
==Lecture 12: KGs and Large Language Models==


Themes:
Themes:
* Questions about the exam
 
* Quizzes
* What are Large Language Models (LLMs)
* Combining KGs and Large Language Models (LLMs)
** retrieval augmented knowledge fusion
** end-to-end KG construction
** LLM-augmented KG to text generation


Mandatory readings:
Mandatory readings:
* The rest of Allemang, Hendler & Gandon (3rd edition)


Useful materials:
* [[:file:S12-KGsAndLLMs.pdf | Slides from the lecture]]
* The rest of Blumauer & Nagy (suggested)
* No mandatory readings beyond the slides
 
Supplementary readings:


* Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024). [[:file:PanEtAl2023-LLMs_KGs_Opportunities_Challenges.pdf | ''Unifying large language models and knowledge graphs: A roadmap.'']]  IEEE Transactions on Knowledge and Data Engineering.
* Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &  Polosukhin, I. (2017). [[:file:NIPS-2017-attention-is-all-you-need-Paper.pdf | ''Attention is all you need.'']]  Advances in neural information processing systems, 30.<br />


&nbsp;
&nbsp;
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)''</div>
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)''</div>

Latest revision as of 10:16, 20 January 2025

Textbooks

Main course book (the whole book is mandatory reading):

  • Hogan, A. et al. (2021). Knowledge Graphs. Springer. Synthesis Lectures on Data, Semantics, and Knowledge 22, 1–237, DOI: 10.2200/S01125ED1V01Y202109DSK022, Springer. https://kgbook.org/

Supplementary books (not mandatory):

  • Dean Allemang, James Hendler & Fabien Gandon (2020). Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition). ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.
  • Andreas Blumauer and Helmut Nagy (2020). The Knowledge Graph Cookbook - Recipes that Work. mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.

Other materials

In addition, the materials listed below for each lecture are either mandatory or suggested reading. More materials will be added to each lecture in the coming weeks.

The lectures and lectures notes are also part of the curriculum.

Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.

Note: to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.

Lectures (in progress)

Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.

Lecture 1: Introduction to KGs

Themes:

  • Introduction to Knowledge Graphs
  • Organisation of the course

Mandatory readings:

Useful materials:

  • Important knowledge graphs (which we will look more at later):
  • Pages 27-55 and 105-122 in Blumauer & Nagy (suggested)

Lecture 2: Representing KGs (RDF)

Themes:

  • Resource Description Framework (RDF)
  • Programming RDF in Python

Mandatory readings:

  • Chapter 3 in Allemang, Hendler & Gandon (3rd edition)
  • W3C's RDF 1.1 Primer until and including 5.1.2 Turtle (but not the rest for now)
  • RDFlib 7.0.0 documentation, the following pages:
    • The main page
    • Getting started with RDFLib
    • Loading and saving RDF
    • Creating RDF triples
    • Navigating Graphs
    • Utilities and convenience functions
    • RDF terms in rdflib
    • Namespaces and Bindings
  • Slides from the lecture

Useful materials:

Lecture 3: Querying and updating KGs (SPARQL)

Themes:

  • SPARQL queries
  • SPARQL Update
  • Programming SPARQL and SPARQL Update in Python

Mandatory readings (tentative):

Useful materials:

Lecture 4: Linked Open Data (LOD)

Themes:

  • Linked Open Data(LOD)
  • The LOD cloud
  • Data provisioning

Mandatory readings (both lecture 4 and 5):

Useful materials

Lecture 5: Open Knowledge Graphs I

Themes:

  • Important open KGs (LOD datasets)
    • Wikidata
    • DBpedia

Mandatory readings:

Lecture 6: Open Knowledge Graphs II

Themes:

  • Important open KGs (LOD datasets)
    • DBpedia (continued)
    • GeoNames
    • the GDELT project
    • WordNet
    • BabelNet
    • ConceptNet

Mandatory readings:

Useful materials

Lecture 7: Enterprise Knowledge Graphs

Themes:

  • Enterprise Knowledge Graphs (EKGs)
  • Google’s Knowledge Graph
  • Amazon’s Product Graph
  • JSON-LD (video presentation)

Mandatory readings:

Supplementary readings:

  • Parts 2 and 4 in Blumauer & Nagy's text book (strongly suggested - this is where Blumauer & Nagy's book is good!)
  • LIS: A knowledge graph-based line information system by Grangel-González, I., Rickart, M., Rudolph, O., & Shah, F. (2023, May). In Proceedings of the European Semantic Web Conference (pp. 591-608). Cham: Springer Nature Switzerland.
  • AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types by Dong, X. L., He, X., Kan, A., Li, X., Liang, Y., Ma, J., ... & Han, J. (2020, August). In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2724-2734). Research paper from Amazon about AutoKnow - this is a bit heavy for Bachelor level, but you can have a look :-)

Lecture 8: Rules (SHACL and RDFS)

Themes:

  • SHACL and RDFS
  • Axioms, rules and entailment
  • Programming SHACL and RDFS in Python

Mandatory readings:

Useful materials:

Lecture 9: Ontologies (OWL)

Themes:

  • Basic OWL concepts
  • Axioms, rules and entailments
  • Programming basic OWL in Python

Mandatory readings:

Useful materials (cursory):

Lecture 10: Vocabularies

Themes:

  • LOD vocabularies and ontologies

Mandatory readings:


Lecture 11: KG embeddings

Themes:

  • KG embeddings
  • Link prediction
  • TorchKGE

Mandatory readings:

Supplementary readings:

Lecture 12: KGs and Large Language Models

Themes:

  • What are Large Language Models (LLMs)
  • Combining KGs and Large Language Models (LLMs)
    • retrieval augmented knowledge fusion
    • end-to-end KG construction
    • LLM-augmented KG to text generation

Mandatory readings:

Supplementary readings:

 

INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)