Lab Solutions: Difference between revisions

From info216
No edit summary
No edit summary
 
(170 intermediate revisions by 8 users not shown)
Line 1: Line 1:
This page will be updated with Python examples related to the lectures and labs. We will add more examples after each lab has ended. The first examples will use Python's RDFlib. We will introduce other relevant libraries later.
Here we will present suggested solutions after each lab. ''The page will be updated as the course progresses''
=[[/info216.wiki.uib.no/Lab: Getting started with VSCode, Python and RDFlib|1 Lab: Getting started with VSCode, Python and RDFlib]] =
<syntaxhighlight>
 
from rdflib import Graph, Namespace


ex = Namespace('http://example.org/')


==Lecture 1: Python, RDFlib, and PyCharm==
g = Graph()


g.bind("ex", ex)


===Printing the triples of the Graph in a readable way===
# The Mueller Investigation was lead by Robert Mueller
<syntaxhighlight>
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))
# The turtle format has the purpose of being more readable for humans.
print(g.serialize(format="turtle").decode())
</syntaxhighlight>


===Coding Tasks Lab 1===
# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
<syntaxhighlight>
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
from rdflib import Graph, Namespace, URIRef, BNode, Literal
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
from rdflib.namespace import RDF, FOAF, XSD
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))


g = Graph()
# Paul Manafort was business partner of Rick Gates
ex = Namespace("http://example.org/")
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))


g.add((ex.Cade, ex.married, ex.Mary))
# He was campaign chairman for Donald Trump
g.add((ex.France, ex.capital, ex.Paris))
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))
g.add((ex.Cade, ex.age, Literal("27", datatype=XSD.integer)))
g.add((ex.Mary, ex.age, Literal("26", datatype=XSD.integer)))
g.add((ex.Mary, ex.interest, ex.Hiking))
g.add((ex.Mary, ex.interest, ex.Chocolate))
g.add((ex.Mary, ex.interest, ex.Biology))
g.add((ex.Mary, RDF.type, ex.Student))
g.add((ex.Paris, RDF.type, ex.City))
g.add((ex.Paris, ex.locatedIn, ex.France))
g.add((ex.Cade, ex.characteristic, ex.Kind))
g.add((ex.Mary, ex.characteristic, ex.Kind))
g.add((ex.Mary, RDF.type, FOAF.Person))
g.add((ex.Cade, RDF.type, FOAF.Person))


</syntaxhighlight>
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))


===Lab 1/2 - Different ways of Making an Address ===
# He was convicted for bank and tax fraud.
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))


<syntaxhighlight>
# He pleaded guilty to conspiracy.
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))


from rdflib import Graph, Namespace, URIRef, BNode, Literal
# He was sentenced to prison.
from rdflib.namespace import RDF, FOAF, XSD
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))


g = Graph()
# He negotiated a plea agreement.
ex = Namespace("http://example.org/")
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))


# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))


# How to represent the address of Cade Tracey. From probably the worst solution to the best.
# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))


# Solution 1 -
# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
# Make the entire address into one Literal. However, Generally we want to seperate each part of an address into their own triples. This is useful for instance if we want to find only the streets where people live.  
print(g.serialize(format="ttl")) # To screen
#g.serialize("lab1.ttl", format="ttl") # To file


g.add((ex.Cade_Tracey, ex.livesIn, Literal("1516_Henry_Street, Berkeley, California 94709, USA")))
# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo :]:
    print(subject, ex.pleadGuiltyTo, object)


# --- IF you have more time tasks ---


# Solution 2 -
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week
# Seperate the different pieces information into their own triples


g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
#Write a method (function) that submits your model for rendering and saves the returned image to file.
g.add((ex.Cade_tracey, ex.city, Literal("Berkeley")))
import requests
g.add((ex.Cade_tracey, ex.state, Literal("California")))
import shutil
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey, ex.country, Literal("USA")))


def graphToImage(graphInput):
    data = {"rdf":graphInput, "from":"ttl", "to":"png"}
    link = "http://www.ldf.fi/service/rdf-grapher"
    response = requests.get(link, params = data, stream=True)
    # print(response.content)
    print(response.raw)
    with open("lab1.png", "wb") as file:
        shutil.copyfileobj(response.raw, file)


# Solution 3 - Some parts of the addresses can make more sense to be resources than Literals.
graph = g.serialize(format="ttl")
# Larger concepts like a city or state are typically represented as resources rather than Literals, but this is not necesarilly a requirement in the case that you don't intend to say more about them.
graphToImage(graph)


g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
</syntaxhighlight>
g.add((ex.Cade_tracey, ex.city, ex.Berkeley))
g.add((ex.Cade_tracey, ex.state, ex.California))
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey, ex.country, ex.USA))


=2 [[/info216.wiki.uib.no/Lab: SPARQL|Lab: SPARQL queries]] =
<syntaxhighlight>
List all triples in your graph.


# Solution 4
select * where {
# Grouping of the information into an Address. We can Represent the address concept with its own URI OR with a Blank Node.
?s ?p ?o .
# One advantage of this is that we can easily remove the entire address, instead of removing each individual part of the address.  
}
# Solution 4 or 5 is how I would recommend to make addresses. Here, ex.CadeAddress could also be called something like ex.address1 or so on, if you want to give each address a unique ID.


# Address URI - CadeAdress
List the first 100 triples in your graph.


g.add((ex.Cade_Tracey, ex.address, ex.CadeAddress))
select * where {
g.add((ex.CadeAddress, RDF.type, ex.Address))
?s ?p ?o .
g.add((ex.CadeAddress, ex.street, Literal("1516 Henry Street")))
} limit 100
g.add((ex.CadeAddress, ex.city, ex.Berkeley))
g.add((ex.CadeAddress, ex.state, ex.California))
g.add((ex.CadeAddress, ex.postalCode, Literal("94709")))
g.add((ex.CadeAddress, ex.country, ex.USA))


# OR
Count the number of triples in your graph.


# Blank node for Address. 
select (count(?s)as ?tripleCount) where {
address = BNode()
?s ?p ?o .
g.add((ex.Cade_Tracey, ex.address, address))
}
g.add((address, RDF.type, ex.Address))
g.add((address, ex.street, Literal("1516 Henry Street", datatype=XSD.string)))
g.add((address, ex.city, ex.Berkeley))
g.add((address, ex.state, ex.California))
g.add((address, ex.postalCode, Literal("94709", datatype=XSD.string)))
g.add((address, ex.country, ex.USA))


Count the number of indictments in your graph.


# Solution 5 using existing vocabularies for address
PREFIX muellerkg: <http://example.org#>
select (Count(?s)as ?numIndictment) where {
?s ?p muellerkg:Indictment .
}


# (in this case https://schema.org/PostalAddress from schema.org).
List everyone who pleaded guilty, along with the name of the investigation.
# Also using existing ontology for places like California. (like http://dbpedia.org/resource/California from dbpedia.org)


schema = "https://schema.org/"
PREFIX m: <http://example.org#>
dbp = "https://dpbedia.org/resource/"
select ?name ?s where {
?s ?p m:guilty-plea;
    m:name ?name.


g.add((ex.Cade_Tracey, schema.address, ex.CadeAddress))
List everyone who were convicted, but who had their conviction overturned by which president.
g.add((ex.CadeAddress, RDF.type, schema.PostalAddress))
g.add((ex.CadeAddress, schema.streetAddress, Literal("1516 Henry Street")))
g.add((ex.CadeAddress, schema.addresCity, dbp.Berkeley))
g.add((ex.CadeAddress, schema.addressRegion, dbp.California))
g.add((ex.CadeAddress, schema.postalCode, Literal("94709")))
g.add((ex.CadeAddress, schema.addressCountry, dbp.United_States))


</syntaxhighlight>
PREFIX muellerkg: <http://example.org#>
#List everyone who were convicted, but who had their conviction overturned by which president.
 
select ?name ?president  where {
?s ?p muellerkg:conviction;
muellerkg:name ?name;
    muellerkg:overturned true;
    muellerkg:president ?president. 
} limit 100
 
For each investigation, list the number of indictments made.


PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where {
?s muellerkg:investigation ?investigation .
} group by (?investigation)


===Lab 2 - Collection Example ===
For each investigation with multiple indictments, list the number of indictments made.
<syntaxhighlight>
from rdflib import Graph, Namespace
from rdflib.collection import Collection


PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where {
?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)


# Sometimes we want to add many objects or subjects for the same predicate at once.
For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first.
# In these cases we can use Collection() to save some time.
# In this case I want to add all countries that Emma has visited at once.


b = BNode()
PREFIX muellerkg: <http://example.org#>
g.add((ex.Emma, ex.visit, b))
select ?investigation (count(?investigation) as ?numIndictments) where {
Collection(g, b,
?s muellerkg:investigation ?investigation.
    [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])
} group by (?investigation)
having (?numIndictments > 1)
order by desc(?numIndictments)


# OR
For each president, list the numbers of convictions and of pardons made after conviction.


g.add((ex.Emma, ex.visit, ex.EmmaVisits))
PREFIX muellerkg: <http://example.org#>
Collection(g, ex.EmmaVisits,
SELECT ?president (COUNT(?conviction) AS ?numConvictions) (COUNT(?pardon) AS ?numPardoned)  
     [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])
WHERE {
    ?indictment muellerkg:president ?president ;
                muellerkg:outcome muellerkg:conviction .
    BIND(?indictment AS ?conviction)
     OPTIONAL {
        ?indictment muellerkg:pardoned true .
        BIND(?indictment AS ?pardon)
    }
}
GROUP BY ?president


</syntaxhighlight>
</syntaxhighlight>


===Lab 3 - SPARQL queries from the lecture ===
== 3 [[/info216.wiki.uib.no/Lab: SPARQL Programming|Lab: SPARQL programming]] ==
<syntaxhighlight>
<syntaxhighlight>
SELECT DISTINCT ?p WHERE {
 
from rdflib import Graph, Namespace, RDF, FOAF
from SPARQLWrapper import SPARQLWrapper, JSON, POST, GET, TURTLE
 
g = Graph()
g.parse("Russia_investigation_kg.ttl")
 
# ----- RDFLIB -----
ex = Namespace('http://example.org#')
 
NS = {
    '': ex,
    'rdf': RDF,
    'foaf': FOAF,
}
 
# Print out a list of all the predicates used in your graph.
task1 = g.query("""
SELECT DISTINCT ?p WHERE{
     ?s ?p ?o .
     ?s ?p ?o .
}
}
</syntaxhighlight>
""", initNs=NS)


<syntaxhighlight>
print(list(task1))
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>


SELECT DISTINCT ?t WHERE {
# Print out a sorted list of all the presidents represented in your graph.
     ?s rdf:type ?t .
task2 = g.query("""
SELECT DISTINCT ?president WHERE{
     ?s :president ?president .
}
}
</syntaxhighlight>
ORDER BY ?president
""", initNs=NS)
 
print(list(task2))
 
# Create dictionary (Python dict) with all the represented presidents as keys. For each key, the value is a list of names of people indicted under that president.
task3_dic = {}


<syntaxhighlight>
task3 = g.query("""
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?president ?person WHERE{
CONSTRUCT {
     ?s :president ?president;
    ?s owl:sameAs ?o2 .
      :name ?person;
} WHERE {
      :outcome :indictment.
     ?s owl:sameAs ?o .
    FILTER(REGEX(STR(?o), "^http://www\\.", "s"))
    BIND(URI(REPLACE(STR(?o), "^http://www\\.", "http://", "s")) AS ?o2)
}
}
</syntaxhighlight>
""", initNs=NS)
 
for president, person in task3:
    if president not in task3_dic:
        task3_dic[president] = [person]
    else:
        task3_dic[president].append(person)
 
print(task3_dic)
 
# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.
 
task4 = g.query("""
    ASK{
        SELECT ?count WHERE{{
          SELECT (COUNT(?s) as ?count) WHERE{
            ?s :pardoned :true;
                  :president :Bill_Clinton  .
                }}
        FILTER (?count > 5)
        }
    }
""", initNs=NS)
 
print(task4.askAnswer)
 
 
# task5 = g.query("""
# DESCRIBE :Donald_Trump
# """, initNs=NS)
 
# print(task5.serialize())
 
# ----- SPARQLWrapper -----
 
SERVER = 'http://localhost:7200' #Might need to replace this
REPOSITORY = 'Labs' #Replace with your repository name
 
# Query Endpoint
sparql = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}')
# Update Endpoint
sparqlUpdate = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}/statements')
 
# Ask whether there was an ongoing indictment on the date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    ASK {
        SELECT ?end ?start
        WHERE{
            ?s ns1:investigation_end ?end;
              ns1:investigation_start ?start;
              ns1:outcome ns1:indictment.
            FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date)
    }
    }
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(f"Are there any investigation on the 1990-01-01: {results['boolean']}")
 
# List ongoing indictments on that date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    SELECT ?s
    WHERE{
        ?s ns1:investigation_end ?end;
          ns1:investigation_start ?start;
          ns1:outcome ns1:indictment.
        FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date)
    }
""")
 
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
 
print("The ongoing investigations on the 1990-01-01 are:")
for result in results["results"]["bindings"]:
    print(result["s"]["value"])
 
# Describe investigation number 100 (muellerkg:investigation_100).
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    DESCRIBE ns1:investigation_100
""")
 
sparql.setReturnFormat(TURTLE)
results = sparql.query().convert()
 
print(results)
 
# Print out a list of all the types used in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
    SELECT DISTINCT ?types
    WHERE{
        ?s rdf:type ?types .
    }
""")
 
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
 
rdf_Types = []
 
for result in results["results"]["bindings"]:
    rdf_Types.append(result["types"]["value"])
 
print(rdf_Types)
 
# Update the graph to that every resource that is an object in a muellerkg:investigation triple has the rdf:type muellerkg:Investigation.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
    INSERT{
        ?invest rdf:type ns1:Investigation .
    }
    WHERE{
        ?s ns1:investigation ?invest .
}"""
 
sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()
 
#To Test
sparql.setQuery("""
    prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX ns1: <http://example.org#>
 
    ASK{
        ns1:watergate rdf:type ns1:Investigation.
    }
""")
 
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(results['boolean'])
 
# Update the graph to that every resource that is an object in a muellerkg:person triple has the rdf:type muellerkg:IndictedPerson.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
    INSERT{
        ?person rdf:type ns1:IndictedPerson .
    }
    WHERE{
        ?s ns1:name ?person .
}"""
 
sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()
 
#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson
 
# Update the graph so all the investigation nodes (such as muellerkg:watergate) become the subject in a dc:title triple with the corresponding string (watergate) as the literal.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX dc: <http://purl.org/dc/elements/1.1/>
 
    INSERT{
        ?invest dc:title ?investString.
    }
    WHERE{
        ?s ns1:investigation ?invest .
        BIND (replace(str(?invest), str(ns1:), "")  AS ?investString)
}"""
 
sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()
 
#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"
 
# Print out a sorted list of all the indicted persons represented in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 
    SELECT ?name
    WHERE{
    ?s  ns1:name ?name;
            ns1:outcome ns1:indictment.
    }
    ORDER BY ?name
""")
 
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
 
names = []
 
for result in results["results"]["bindings"]:
    names.append(result["name"]["value"])


===Lab 3 - SPARQL - Select all contents of lists (rdfllib.Collection)===
print(names)
<syntaxhighlight>


# rdflib.Collection has a different interntal structure so it requires a slightly more advance query. Here I am selecting all places that Emma has visited.
# Print out the minimum, average and maximum indictment days for all the indictments in the graph.


PREFIX ex:   <http://example.org/>
sparql.setQuery("""
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>


SELECT ?visit
    SELECT (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
WHERE {
        ?s  ns1:indictment_days ?days;
  ex:Emma ex:visit/rdf:rest*/rdf:first ?visit
            ns1:outcome ns1:indictment.
   
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
}
}
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
for result in results["results"]["bindings"]:
    print(f'The longest an investigation lasted was: {result["max"]["value"]}')
    print(f'The shortest an investigation lasted was: {result["min"]["value"]}')
    print(f'The average investigation lasted: {result["avg"]["value"]}')
# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.
sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>
    SELECT ?investigation (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
    ?s  ns1:indictment_days ?days;
        ns1:outcome ns1:indictment;
        ns1:investigation ?investigation.
   
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
    }
    GROUP BY ?investigation
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
for result in results["results"]["bindings"]:
    print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')
</syntaxhighlight>
== Lab 4 JSON-LD==
Part 1<syntaxhighlight lang="json-ld">
{
  "@context": {
      "@base": "http://example.org/",
      "edges": "http://example.org/triple",
      "start": "http://example.org/source",
      "rel": "http://exaxmple.org/predicate",
      "end": "http://example.org/object",
      "Person" : "http://example.org/Person",
      "birthday" : {
          "@id" : "http://example.org/birthday",
          "@type" : "xsd:date"
      },
      "nameEng" : {
          "@id" : "http://example.org/en/name",
          "@language" : "en"
      },
      "nameFr" : {
          "@id" : "http://example.org/fr/name",
          "@language" : "fr"
      },
      "nameCh" : {
          "@id" : "http://example.org/ch/name",
          "@language" : "ch"
      },
      "age" : {
          "@id" : "http://example.org/age",
          "@type" : "xsd:int"
      },
      "likes" : "http://example.org/games/likes",
      "haircolor" : "http://example.org/games/haircolor"
  },
  "@graph": [
      {
          "@id": "people/Jeremy",
          "@type": "Person",
          "birthday" : "1987.1.1",
          "nameEng" : "Jeremy",
          "age" : 26
      },
      {
          "@id": "people/Tom",
          "@type": "Person"
      },
      {
          "@id": "people/Ju",
          "@type": "Person",
          "birthday" : "2001.1.1",
          "nameCh" : "Ju",
          "age" : 22,
          "likes" : "bastketball"
      },
      {
          "@id": "people/Louis",
          "@type": "Person",
          "birthday" : "1978.1.1",
          "haircolor" : "Black",
          "nameFr" : "Louis",
          "age" : 45
      },
      {"edges" : [
      {
          "start" : "people/Jeremy",
          "rel" : "knows",
          "end" : "people/Tom"
      },
      {
          "start" : "people/Tom",
          "rel" : "knows",
          "end" : "people/Louis"
      },
      {
          "start" : "people/Louis",
          "rel" : "teaches",
          "end" : "people/Ju"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Jeremy"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Tom"
      }
      ]}
  ]
}
}
</syntaxhighlight>
</syntaxhighlight>Part 2-3<syntaxhighlight lang="python">
import rdflib
 
CN_BASE = 'http://api.conceptnet.io/c/en/'
 
g = rdflib.Graph()
g.parse(CN_BASE+'indictment', format='json-ld')
 
# To download JSON object:
 
import json
import requests


json_obj = requests.get(CN_BASE+'indictment').json()


===Lab 3 - Setting a Blazegraph connection and two SELECT examples ===
# To change the @context:
<syntaxhighlight>
from pymantic import sparql


# This creates a server connection to the same URL that contains the graphic interface for Blazegraph
context = {
server = sparql.SPARQLServer("http://127.0.0.1:9999/blazegraph/sparql")
    "@base": "http://ex.org/",
    "edges": "http://ex.org/triple/",
    "start": "http://ex.org/s/",
    "rel": "http://ex.org/p/",
    "end": "http://ex.org/o/",
    "label": "http://ex.org/label"
}
json_obj['@context'] = context
json_str = json.dumps(json_obj)


g = rdflib.Graph()
g.parse(data=json_str, format='json-ld')


# SELECT and print all triples in the Blazegraph database
# To extract triples (here with labels):


query = """SELECT * where { ?s ?p ?o }"""
r = g.query("""
result = server.query(query)
        SELECT ?s ?sLabel ?p ?o ?oLabel WHERE {
for uri in result['results']['bindings']:
            ?edge
    print(uri['s']['value'] + " " + uri['p']['value'] + " " + uri['o']['value'])
                <http://ex.org/s/> ?s ;
                <http://ex.org/p/> ?p ;
                <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})
print(r.serialize(format='txt').decode())


# Construct a new graph:


# SELECT the city and country where Emma lives.  
r = g.query("""
        CONSTRUCT {
            ?s ?p ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
        } WHERE {
            ?edge <http://ex.org/s/> ?s ;
                  <http://ex.org/p/> ?p ;
                  <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})


query = """PREFIX ex: <http://example.org/>
print(r.graph.serialize(format='ttl'))
SELECT DISTINCT ?city ?country
WHERE {ex:Emma ex:address ?address. ?address ex:city ?city. ?address ex:country ?country}
"""
result = server.query(query)
for uri in result['results']['bindings']:
    print(uri['city']['value'] + " " + uri['country']['value'])
</syntaxhighlight>
</syntaxhighlight>


== Lab 6 SHACL ==
<syntaxhighlight lang="turtle">
Every person under investigation has exactly one name.
ex:PersonShape
  a sh:NodeShape;
  sh:targetClass ex:PersonUnderInvestigation;
  sh:property [
  sh:path foaf:name;
  sh:maxCount 1;
  sh:minCount 1
].


 
The object of a charged with property must be a URI.
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2020. All code examples are [https://creativecommons.org/choose/zero/ CC0].'' </div>
ex:PersonShape
  a sh:NodeShape;
  sh:targetClass ex:PersonUnderInvestigation;
  sh:property [
    sh:path ex:chargedWith;
    sh:nodeKind sh:URI
  ].
The object of a charged with property must be an offense.
ex:PersonShape
  a sh:NodeShape;
  sh:targetClass ex:PersonUnderInvestigation;
  sh:property [
    sh:path ex:chargedWith;
    sh:class ex:Offense
  ].
 
All person names must be language-tagged (hint: rdf:langString is a datatype!).
ex:PersonShape
  a sh:NodeShape;
  sh:targetClass ex:PersonUnderInvestigation;
  sh:property [
    sh:path foaf:name;
    sh:datatype rdf:langString
  ].
</syntaxhighlight>

Latest revision as of 09:09, 17 March 2025

Here we will present suggested solutions after each lab. The page will be updated as the course progresses

1 Lab: Getting started with VSCode, Python and RDFlib

from rdflib import Graph, Namespace

ex = Namespace('http://example.org/')

g = Graph()

g.bind("ex", ex)

# The Mueller Investigation was lead by Robert Mueller
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))

# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))

# Paul Manafort was business partner of Rick Gates
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))

# He was campaign chairman for Donald Trump
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))

# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))

# He was convicted for bank and tax fraud.
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))

# He pleaded guilty to conspiracy.
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))

# He was sentenced to prison.
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))

# He negotiated a plea agreement.
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))

# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))

# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))

# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
print(g.serialize(format="ttl")) # To screen
#g.serialize("lab1.ttl", format="ttl") # To file

# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo :]:
    print(subject, ex.pleadGuiltyTo, object)

# --- IF you have more time tasks ---

# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week 

#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil

def graphToImage(graphInput):
    data = {"rdf":graphInput, "from":"ttl", "to":"png"}
    link = "http://www.ldf.fi/service/rdf-grapher"
    response = requests.get(link, params = data, stream=True)
    # print(response.content)
    print(response.raw)
    with open("lab1.png", "wb") as file:
        shutil.copyfileobj(response.raw, file)

graph = g.serialize(format="ttl")
graphToImage(graph)

2 Lab: SPARQL queries

List all triples in your graph.

select * where { 
	?s ?p ?o .
} 

List the first 100 triples in your graph.

select * where { 
	?s ?p ?o .
} limit 100 

Count the number of triples in your graph.

select (count(?s)as ?tripleCount) where { 
	?s ?p ?o .
} 

Count the number of indictments in your graph.

PREFIX muellerkg: <http://example.org#>
select (Count(?s)as ?numIndictment) where { 
	?s ?p muellerkg:Indictment .
} 

List everyone who pleaded guilty, along with the name of the investigation.

PREFIX m: <http://example.org#>
select ?name ?s where { 
	?s ?p m:guilty-plea;
    	m:name ?name.
}  

List everyone who were convicted, but who had their conviction overturned by which president.

PREFIX muellerkg: <http://example.org#>
#List everyone who were convicted, but who had their conviction overturned by which president.

select ?name ?president   where { 
	?s ?p muellerkg:conviction;
		muellerkg:name ?name;
    	muellerkg:overturned true;
     	muellerkg:president ?president.  	
} limit 100 

For each investigation, list the number of indictments made.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation .
} group by (?investigation)

For each investigation with multiple indictments, list the number of indictments made.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)

For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)
order by desc(?numIndictments)

For each president, list the numbers of convictions and of pardons made after conviction.

PREFIX muellerkg: <http://example.org#>
SELECT ?president (COUNT(?conviction) AS ?numConvictions) (COUNT(?pardon) AS ?numPardoned) 
WHERE { 
    ?indictment muellerkg:president ?president ;
                muellerkg:outcome muellerkg:conviction .
    BIND(?indictment AS ?conviction)
    OPTIONAL {
        ?indictment muellerkg:pardoned true .
        BIND(?indictment AS ?pardon)
    }
} 
GROUP BY ?president

3 Lab: SPARQL programming

from rdflib import Graph, Namespace, RDF, FOAF
from SPARQLWrapper import SPARQLWrapper, JSON, POST, GET, TURTLE

g = Graph()
g.parse("Russia_investigation_kg.ttl")

# ----- RDFLIB -----
ex = Namespace('http://example.org#')

NS = {
    '': ex,
    'rdf': RDF,
    'foaf': FOAF,
}

# Print out a list of all the predicates used in your graph.
task1 = g.query("""
SELECT DISTINCT ?p WHERE{
    ?s ?p ?o .
}
""", initNs=NS)

print(list(task1))

# Print out a sorted list of all the presidents represented in your graph.
task2 = g.query("""
SELECT DISTINCT ?president WHERE{
    ?s :president ?president .
}
ORDER BY ?president
""", initNs=NS)

print(list(task2))

# Create dictionary (Python dict) with all the represented presidents as keys. For each key, the value is a list of names of people indicted under that president.
task3_dic = {}

task3 = g.query("""
SELECT ?president ?person WHERE{
    ?s :president ?president;
       :name ?person;
       :outcome :indictment.
}
""", initNs=NS)

for president, person in task3:
    if president not in task3_dic:
        task3_dic[president] = [person]
    else:
        task3_dic[president].append(person)

print(task3_dic)

# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.

task4 = g.query("""
    ASK{
        SELECT ?count WHERE{{
  	        SELECT (COUNT(?s) as ?count) WHERE{
    	        ?s :pardoned :true;
                   :president :Bill_Clinton  .
                }}
        FILTER (?count > 5) 
        }
    }
""", initNs=NS)

print(task4.askAnswer)


# task5 = g.query(""" 
# DESCRIBE :Donald_Trump
# """, initNs=NS)

# print(task5.serialize())

# ----- SPARQLWrapper -----

SERVER = 'http://localhost:7200' #Might need to replace this
REPOSITORY = 'Labs' #Replace with your repository name

# Query Endpoint
sparql = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}') 
# Update Endpoint
sparqlUpdate = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}/statements')

# Ask whether there was an ongoing indictment on the date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    ASK {
        SELECT ?end ?start
        WHERE{
            ?s ns1:investigation_end ?end;
               ns1:investigation_start ?start;
               ns1:outcome ns1:indictment.
            FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date) 
	    }
    }
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(f"Are there any investigation on the 1990-01-01: {results['boolean']}")

# List ongoing indictments on that date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    SELECT ?s
    WHERE{
        ?s ns1:investigation_end ?end;
           ns1:investigation_start ?start;
           ns1:outcome ns1:indictment.
        FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date) 
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

print("The ongoing investigations on the 1990-01-01 are:")
for result in results["results"]["bindings"]:
    print(result["s"]["value"])

# Describe investigation number 100 (muellerkg:investigation_100).
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    DESCRIBE ns1:investigation_100
""")

sparql.setReturnFormat(TURTLE)
results = sparql.query().convert()

print(results)

# Print out a list of all the types used in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    SELECT DISTINCT ?types
    WHERE{
        ?s rdf:type ?types . 
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

rdf_Types = []

for result in results["results"]["bindings"]:
    rdf_Types.append(result["types"]["value"])

print(rdf_Types)

# Update the graph to that every resource that is an object in a muellerkg:investigation triple has the rdf:type muellerkg:Investigation.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    INSERT{
        ?invest rdf:type ns1:Investigation .
    }
    WHERE{
        ?s ns1:investigation ?invest .
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#To Test
sparql.setQuery("""
    prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX ns1: <http://example.org#>

    ASK{
        ns1:watergate rdf:type ns1:Investigation.
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(results['boolean'])

# Update the graph to that every resource that is an object in a muellerkg:person triple has the rdf:type muellerkg:IndictedPerson.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    INSERT{
        ?person rdf:type ns1:IndictedPerson .
    }
    WHERE{
        ?s ns1:name ?person .
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson

# Update the graph so all the investigation nodes (such as muellerkg:watergate) become the subject in a dc:title triple with the corresponding string (watergate) as the literal.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX dc: <http://purl.org/dc/elements/1.1/>

    INSERT{
        ?invest dc:title ?investString.
    }
    WHERE{
        ?s ns1:investigation ?invest .
        BIND (replace(str(?invest), str(ns1:), "")  AS ?investString)
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"

# Print out a sorted list of all the indicted persons represented in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX foaf: <http://xmlns.com/foaf/0.1/>

    SELECT ?name
    WHERE{
    ?s  ns1:name ?name;
            ns1:outcome ns1:indictment.
    }
    ORDER BY ?name
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

names = []

for result in results["results"]["bindings"]:
    names.append(result["name"]["value"])

print(names)

# Print out the minimum, average and maximum indictment days for all the indictments in the graph.

sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>

    SELECT (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
        ?s  ns1:indictment_days ?days;
            ns1:outcome ns1:indictment.
    
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
}
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

for result in results["results"]["bindings"]:
    print(f'The longest an investigation lasted was: {result["max"]["value"]}')
    print(f'The shortest an investigation lasted was: {result["min"]["value"]}')
    print(f'The average investigation lasted: {result["avg"]["value"]}')

# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.

sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>

    SELECT ?investigation (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
    ?s  ns1:indictment_days ?days;
        ns1:outcome ns1:indictment;
        ns1:investigation ?investigation.
    
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
    }
    GROUP BY ?investigation
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

for result in results["results"]["bindings"]:
    print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')

Lab 4 JSON-LD

Part 1

{
  "@context": {
      "@base": "http://example.org/",
      "edges": "http://example.org/triple",
      "start": "http://example.org/source",
      "rel": "http://exaxmple.org/predicate",
      "end": "http://example.org/object",
      "Person" : "http://example.org/Person",
      "birthday" : {
          "@id" : "http://example.org/birthday",
          "@type" : "xsd:date"
      },
      "nameEng" : {
          "@id" : "http://example.org/en/name",
          "@language" : "en"
      },
      "nameFr" : {
          "@id" : "http://example.org/fr/name",
          "@language" : "fr"
      },
      "nameCh" : {
          "@id" : "http://example.org/ch/name",
          "@language" : "ch"
      },
      "age" : {
          "@id" : "http://example.org/age",
          "@type" : "xsd:int"
      },
      "likes" : "http://example.org/games/likes",
      "haircolor" : "http://example.org/games/haircolor"
  },
  "@graph": [
      {
          "@id": "people/Jeremy",
          "@type": "Person",
          "birthday" : "1987.1.1",
          "nameEng" : "Jeremy",
          "age" : 26
      },
      {
          "@id": "people/Tom",
          "@type": "Person"
      },
      {
          "@id": "people/Ju",
          "@type": "Person",
          "birthday" : "2001.1.1",
          "nameCh" : "Ju",
          "age" : 22,
          "likes" : "bastketball"
      },
      {
          "@id": "people/Louis",
          "@type": "Person",
          "birthday" : "1978.1.1",
          "haircolor" : "Black",
          "nameFr" : "Louis",
          "age" : 45
      },
      {"edges" : [
      {
          "start" : "people/Jeremy",
          "rel" : "knows",
          "end" : "people/Tom"
      },
      {
          "start" : "people/Tom",
          "rel" : "knows",
          "end" : "people/Louis"
      },
      {
          "start" : "people/Louis",
          "rel" : "teaches",
          "end" : "people/Ju"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Jeremy"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Tom"
      }
      ]}
  ]
}

Part 2-3

import rdflib

CN_BASE = 'http://api.conceptnet.io/c/en/'

g = rdflib.Graph()
g.parse(CN_BASE+'indictment', format='json-ld')

# To download JSON object:

import json
import requests

json_obj = requests.get(CN_BASE+'indictment').json()

# To change the @context:

context = {
     "@base": "http://ex.org/",
     "edges": "http://ex.org/triple/",
     "start": "http://ex.org/s/",
     "rel": "http://ex.org/p/",
     "end": "http://ex.org/o/",
     "label": "http://ex.org/label"
}
json_obj['@context'] = context
json_str = json.dumps(json_obj)

g = rdflib.Graph()
g.parse(data=json_str, format='json-ld')

# To extract triples (here with labels):

r = g.query("""
         SELECT ?s ?sLabel ?p ?o ?oLabel WHERE {
             ?edge
                 <http://ex.org/s/> ?s ;
                 <http://ex.org/p/> ?p ;
                 <http://ex.org/o/> ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
}
         """, initNs={'cn': CN_BASE})
print(r.serialize(format='txt').decode())

# Construct a new graph:

r = g.query("""
         CONSTRUCT {
             ?s ?p ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
         } WHERE {
             ?edge <http://ex.org/s/> ?s ;
                   <http://ex.org/p/> ?p ;
                   <http://ex.org/o/> ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
}
         """, initNs={'cn': CN_BASE})

print(r.graph.serialize(format='ttl'))

Lab 6 SHACL

Every person under investigation has exactly one name.
ex:PersonShape 
   a sh:NodeShape;
   sh:targetClass ex:PersonUnderInvestigation;
   sh:property [
   sh:path foaf:name;
   sh:maxCount 1;
   sh:minCount 1
].

The object of a charged with property must be a URI.
ex:PersonShape 
   a sh:NodeShape;
   sh:targetClass ex:PersonUnderInvestigation;
   sh:property [
     sh:path ex:chargedWith;
     sh:nodeKind sh:URI
   ].
 
 The object of a charged with property must be an offense.
 ex:PersonShape 
   a sh:NodeShape;
   sh:targetClass ex:PersonUnderInvestigation;
   sh:property [
     sh:path ex:chargedWith;
     sh:class ex:Offense
   ].
   
 All person names must be language-tagged (hint: rdf:langString is a datatype!).
 ex:PersonShape 
   a sh:NodeShape;
   sh:targetClass ex:PersonUnderInvestigation;
   sh:property [
     sh:path foaf:name;
     sh:datatype rdf:langString
   ].