Readings: Difference between revisions

From info216
 
(2 intermediate revisions by the same user not shown)
Line 220: Line 220:


Useful materials:
Useful materials:
* [:file:Yasunaga2022-QA-GNN-2104.06378v5.pdf The QA-GNN paper]
* [[:file:Yasunaga2022-QA-GNN-2104.06378v5.pdf | The QA-GNN paper]]
* [https://conceptnet.io/ ConceptNet:] An open, multilingual knowledge graph
* [https://conceptnet.io/ ConceptNet:] An open, multilingual knowledge graph
* [https://pytorch-geometric.readthedocs.io/en/latest/ PyG documentation:] PyG (PyTorch Geometric) is a library built upon  PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
* [https://pytorch-geometric.readthedocs.io/en/latest/ PyG Documentation:] PyG (PyTorch Geometric) is a library built upon  PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.


==Session 12: KG Refinement (KGs and LLMs)==
==Session 12: KG Refinement (KGs and LLMs)==

Latest revision as of 08:52, 7 April 2025

Textbooks

Main course book (the whole book is mandatory reading):

  • Hogan, A. et al. (2021). Knowledge Graphs. Springer. Synthesis Lectures on Data, Semantics, and Knowledge 22, 1–237, DOI: 10.2200/S01125ED1V01Y202109DSK022, Springer. https://kgbook.org/

Supplementary books (not mandatory):

  • Dean Allemang, James Hendler & Fabien Gandon (2020). Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition). ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.
  • Andreas Blumauer and Helmut Nagy (2020). The Knowledge Graph Cookbook - Recipes that Work. mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.

Other materials

In addition, the materials listed below for each lecture are either mandatory or suggested reading. More materials will be added to each lecture in the coming weeks.

The labs, lectures and lectures notes are also part of the curriculum.

Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.

Note: to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.

Lectures (in progress)

Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Hogan et al. ("Knowledge Graphs") are mandatory, whereas the chapters in Allemang, Hendler & Gandon ("Semantic Web") are suggested.

Session 1: Introduction to KGs

Themes:

  • Introduction to Knowledge Graphs
  • Organisation of the course

Mandatory readings:

Useful materials:

Session 2: Querying and updating KGs (SPARQL)

Themes:

  • SPARQL queries
  • SPARQL Update
  • Programming SPARQL and SPARQL Update in Python

Mandatory readings:

Useful materials:

Session 3: Creating KGs

Themes:

  • Extracting KGs from text
  • Extracting from marked-up sources
  • Extracting from SQL databases and JSON

Mandatory readings:

Useful materials:

Session 4: Validating KGs

Themes:

  • Validating KG schemas (SHACL)
  • Semantic KG schemas/vocabularies (RDFS)

Mandatory readings:

Useful materials:

Session 5: Advanced KGs

Themes:

  • More about RDF, e.g.,
    • identity
    • blank nodes
    • reification
    • higher-arity graphs

Mandatory readings:

Useful materials:

Session 6: Ontologies

Themes:

  • More powerful vocabularies/ontologies (OWL)
  • Creating ontologies

Mandatory readings:

Useful materials:

Session 7: Reasoning

Themes:

  • More about semantic KG schemas (RDFS)
  • Description logic
  • OWL-DL

Mandatory readings:

Useful materials:

Session 8: KG Analytics

Themes:

  • Graph analytics
    • graph metrics
    • directed vector-labelled graphs
    • analysis frameworks and techniques
  • Symbolic learning
    • rule, axiom, and hypothesis mining

Mandatory readings:

Useful materials:

Session 9: KGs in Practice (Guest Lecture)

Guest lecture by Sindre Asplem, Capgemini.

Mandatory readings:

Session 10: KG Embeddings

Themes:

  • Semantic embedding spaces
  • KG embedding techniques
  • Graph neural networks

Mandatory readings:

Supplementary readings:

Useful materials:

  • PyKEEN is an alternative Python API. It is similar and may be more up-to-date than TorchKGE.

Session 11: Graph Neural Networks (GNNs)

Themes:

  • Graph neural networks
    • recurrent/recursive, convolutional, GATs
  • Question answering with GNNs (QA-GNN)
  • Open KGs:
    • WordNet, BabelNet, ConceptNet

Mandatory readings:

  • Section 5.3 Graph neural networks in Hogan et al.

Useful materials:

  • The QA-GNN paper
  • ConceptNet: An open, multilingual knowledge graph
  • PyG Documentation: PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

Session 12: KG Refinement (KGs and LLMs)

Themes:

  • Enriching KGs

Mandatory readings:

  • Chapter 8 Completion + Correction in Hogan et al.

Useful materials:

Session 13: KGs in Practice

Themes:

  • Open KGs
  • Enterprise KGs

Mandatory readings:

Useful materials:



 

INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)