Readings: Difference between revisions

From info216
No edit summary
No edit summary
 
(280 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Text book=


The text book in INFO216 is ''Semantic Web for the Working Ontologist, Second Edition: Effective Modeling in RDFS and OWL by Dean Allemang and James Hendler (Jun 3, 2011). Morgan Kaufmann.'' '''The whole book is obligatory reading.'''
=Textbooks=


Main course book (''the whole book is mandatory reading''):
* Hogan, A. et al. (2021). '''Knowledge Graphs.''' Springer. ''Synthesis Lectures on Data, Semantics, and Knowledge'' 22, 1–237, DOI: 10.2200/S01125ED1V01Y202109DSK022, Springer. https://kgbook.org/
Supplementary books (''not'' mandatory):
* Dean Allemang, James Hendler & Fabien Gandon (2020). '''Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition).''' ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.
* Andreas Blumauer and Helmut Nagy (2020). '''The Knowledge Graph Cookbook - Recipes that Work.''' mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.


=Other materials=
=Other materials=


In addition, '''the materials listed below for each lecture are either mandatory or suggested reading.''' Because we are moving from Java to Python this spring, the reading list is not final. We will add more materials to each lecture in the next few weeks.
In addition, '''the materials listed below for each lecture are either mandatory or suggested reading'''. More materials will be added to each lecture in the coming weeks.


'''The lectures and lectures notes are also part of the curriculum.'''
'''The labs, lectures and lectures notes are also part of the curriculum.'''


Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.  
Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.


Note: to download some of the papers, you need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.
''Note:'' to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.


=Lectures=


=Lectures=
Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Hogan et al. ("Knowledge Graphs") are mandatory, whereas the chapters in Allemang, Hendler & Gandon ("Semantic Web") are suggested.
 
==Session 1: Introduction to KGs==
 
Themes:
* Introduction to Knowledge Graphs
* Organisation of the course


Below are the mandatory and suggested readings for each lecture. All the text-book chapters are mandatory.
Mandatory readings:
* Chapter 1 Introduction, section 2.1 Models, and Appendix A Background in Hogan et al.
* [http://www.youtube.com/watch?v=HeUrEh-nqtU Tim Berners-Lee talks about the semantic web]
* [http://rdflib.readthedocs.io/ RDFlib 7.1.3 documentation], the following pages:
** The main page
** Getting started with RDFLib
** Loading and saving RDF
** Creating RDF triples
** Navigating Graphs
** Utilities and convenience functions
** RDF terms in rdflib
** Namespaces and Bindings
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).


Useful materials:
* Chapters 1-3 in Allemang, Hendler & Gandon (3rd edition)
* Wikidata (https://www.wikidata.org/)


==Lecture 1: Knowledge Graphs==
==Session 2: Querying and updating KGs (SPARQL)==


Themes:
Themes:
* Web of Data
* SPARQL queries
* INFO216
* SPARQL Update
* RDFlib
* Programming SPARQL and SPARQL Update in Python
* The programming project


Mandatory readings:
Mandatory readings:
* Chapters 1-2 in Allemang & Hendler. ''In text book.''
* Section 2.2 Queries in Hogan et al.
* [http://www.youtube.com/watch?v=HeUrEh-nqtU Tim Berners-Lee talks about the semantic web] (mandatory)
* [https://graphdb.ontotext.com/documentation/10.8/sparql.html The SPARQL query language — GraphDB 10.8 documentation]
* [http://jena.apache.org/about_jena/architecture.html Apache architecture overview] (mandatory)
* [https://rdflib.readthedocs.io/ rdflib 7.1.3] materials: [https://rdflib.readthedocs.io/en/stable/intro_to_sparql.html Querying with SPARQL]
* [http://jena.apache.org/documentation/rdf/index.html The core RDF API] (mandatory)
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
* [http://jena.apache.org/tutorials/rdf_api.html An introduction to RDF and the Jena RDF API] (mandatory)
* [[:File:INFO216-introducction.pdf | Slides from the lecture]]
** [[:File:S01-Intro-WoD-Jena-7.pdf | Additional slides from the lecture]]


Useful materials:
Useful materials:
* [http://jena.apache.org/about_jena/ Welcome to Apache Jena] (useful starting page)
* Chapter 6 in Allemang, Hendler & Gandon (3rd edition)3.12 Session 12: KGs and LLMs
* [http://jena.apache.org/index.html Apache Jena] main page (useful starting page)
* [http://www.w3.org/TR/sparql11-query/ SPARQL 1.1 Query Language]
* [http://jena.apache.org/tutorials/ Jena tutorials] (useful starting page)
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language]
* [https://jena.apache.org/documentation/javadoc/jena/ Package org.apache.jena.rdf.model] (supplementary, but necessary for the labs and project - lab 1 and the lecture notes lists the classes and methods you should look at)
* [[:File:sparql-1_1-cheat-sheet.pdf | SPARQL 1.1 Cheat Sheet]]
* [https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions SPARQL Expressions and Functions]
 
==Session 3: Creating KGs==
 
Themes:
* Extracting KGs from text
* Extracting from marked-up sources
* Extracting from SQL databases and JSON
 
Mandatory readings:
* Chapter 6 Creation and Enrichment, sections 6.1-6.4, in Hogan et al.
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).


Useful materials:
* [https://www.dbpedia-spotlight.org/ DBpedia Spotlight]
* [https://graphdb.ontotext.com/documentation/10.0/virtualization.html Virtualization, GraphDB 10.0 documentation]
* [https://json-ld.org/ JSON for Linking Data]


==Lecture 2: RDF==
==Session 4: Validating KGs==


Themes:  
Themes:
* RDF
* Validating KG schemas (SHACL)
* Programming RDF in Python
* Semantic KG schemas/vocabularies (RDFS)
* Finding datasets and vocabularies for your projects


<!--
Mandatory readings:
Mandatory readings:
* Chapter 3 in Allemang & Hendler. ''In text book.''
* Section 3.1 Schema in Hogan et al.
* [https://www.w3.org/TR/rdf11-primer/ W3C's RDF 1.1 Primer] (mandatory)
* Sections 5.1, 5.3, 5.5, 5.6.1, and 5.6.3 in [https://book.validatingrdf.com/bookHtml011.html Gayo, J.E. et al. Validating RDF].  
* We also continue with the Jena RDF materials from lecture 1:
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
** [http://jena.apache.org/documentation/rdf/index.html The core RDF API] (mandatory)
** [http://jena.apache.org/tutorials/rdf_api.html An introduction to RDF and the Jena RDF API] (mandatory)
* [[:File:S02-RDF-8.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [https://www.w3.org/TR/rdf11-concepts/ W3C's RDF 1.1 Concepts and Abstract Syntax] (cursory)
* SHACL
** [https://jena.apache.org/documentation/javadoc/jena/ Package org.apache.jena.rdf.model] (supplementary, but necessary for the labs and project)
** Interactive, online [https://shacl.org/playground/ SHACL Playground]
-->
** [https://pypi.org/project/pyshacl/ pySHACL - A Python validator for SHACL at PyPi.org] ''(after installation, go straight to "Python Module Use".)''
** [https://w3c.github.io/data-shapes/shacl/ Shapes Constraint Language (SHACL) (Editor's Draft)]
* RDFS
** [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (''the axioms and entailments in sections 8 and 9 are most important, and we will go through the most important ones in the lecture'')
** [https://github.com/RDFLib/OWL-RL OWL-RL] adds inference capability on top of RDFLib. To use it, copy the ''owlrl'' folder into your project folder, next to your Python files, and import it with ''import owlrl''.
** [https://owl-rl.readthedocs.io/en/latest/owlrl.html OWL-RL documentation] (most likely more detailed than you will need)


==Lecture 3: SPARQL==
==Session 5: Advanced KGs==


Themes:
Themes:
* SPARQL
* More about RDF, e.g.,
* SPARQL Update
** identity
* Programming SPARQL and SPARQL Update in Python
** blank nodes
** reification
** higher-arity graphs


<!--
Mandatory readings:
Mandatory readings:
* Chapter 5 in Allemang & Hendler. ''In text book.''
* Sections 3.2 Identity and 3.3 Context in Hogan et al.
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (Sections 1-3 are obligatory)
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
* [[:File:S03-SPARQL-12.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [http://www.w3.org/TR/sparql11-query/ SPARQL 1.1 Query Language]
* [https://www.w3.org/TR/rdf11-concepts/ W3C's RDF 1.1 Concepts and Abstract Syntax]
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (the rest of it)
* [https://www.ldf.fi/service/rdf-grapher RDF Grapher] for drawing RDF graphs
* [https://www.w3.org/TR/sparql11-overview/ SPARQL 1.1 Overview]
* [https://issemantic.net/rdf-visualizer RDF Visualizer] for drawing RDF graphs
* [http://jena.apache.org/documentation/javadoc/arq/ Javadoc] for Apache Jena ARQ 3.2.0
** Query, QueryFactory, QueryExecution, QueryExecutionFactory, ResultSet
** UpdateFactory, UpdateAction
: (supplementary, but perhaps necessary for the labs and project)
-->


==Lecture 4: Application Architecture==
==Session 6: Ontologies==


Themes:
Themes:
* Application components
* More powerful vocabularies/ontologies (OWL)
* Triple stores
* Creating ontologies
* Visualisation


<!--
Mandatory readings:
Mandatory readings:
* Chapter 4 in Allemang & Hendler. ''In text book.''
* Sections 4.1 Ontologies and 6.3 Schema/ontology creation in Hogan et al.
* [http://jena.apache.org/about_jena/architecture.html Apache architecture overview] (mandatory, from lecture 1)
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
* [https://jena.apache.org/documentation/tdb/index.html Apache's TDB] (mandatory)
* [https://jena.apache.org/documentation/tdb/java_api.html Apache's TDB Java API] (mandatory)
* [https://jena.apache.org/documentation/fuseki2/index.html Apache Jena Fuseki] (mandatory, we use Fuseki 2)
* [[:File:S04-architecture-5.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [https://jena.apache.org/documentation/javadoc/tdb/ Package org.apache.jena.tdb] Class TDBFactory (createDataset)
* [http://www.w3.org/TR/owl-primer/ OWL 2 Primer, sections 2-6 (advanced: 9-10)] (show: Turtle)
* [http://www.eswc2012.org/sites/default/files/eswc2012_submission_303.pdf Skjæveland 2012: Sgvizler.] ''Paper.''
* [https://service.tib.eu/webvowl/ WebVOWL] interactive OWL visualisation tool
* [http://mgskjaeveland.github.io/sgvizler/ Sgvizler 0.6]
* Selected vocabularies:
* [[:File:LohmannEtAl2016-VisualizingOntologiesWithVOWL.pdf | Lohmann et al. (2019): Visualizing Ontologies with VOWL. ''Semantic Web Journal.'']] ''Paper.''
** [http://xmlns.com/foaf/spec/ Friend of a Friend (FOAF)] (if necessary follow the link to the 2004 version)
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
** [http://www.w3.org/TR/owl-time/ Time ontology in OWL (time, OWL-time)]
-->
** [http://dublincore.org/ Dublin Core (DC)]
<!--
** [http://www.w3.org/2004/02/skos/ SKOS - Simple Knowledge Organization System Home Page]
* [[:File:S07-Visualisation-4.pdf | Slides from the lecture]]
** [http://www.w3.org/ns/prov# Provenance Interchange (PROV)]
-->
* Linked Open Vocabularies (LOV, https://lov.linkeddata.es/dataset/lov/)
 
==Session 7: Reasoning==
 
Themes:
* More about semantic KG schemas (RDFS)
* Description logic
* OWL-DL
 
Mandatory readings:
* Section 4.2 Rules + DL in Hogan et al.
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).


Useful materials:
* [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (''the axioms and entailments in sections 8 and 9 are most important'')
* [http://www.w3.org/TR/owl-overview/ W3C OWL 2 Overview]
* [http://www.w3.org/TR/owl-primer/ W3C OWL 2 Primer]
* [https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/ W3C OWL 2 Quick Reference Guide (2nd Edition)]


==Lecture 5: RDFS==
==Session 8: KG Analytics==


Themes:
Themes:
* RDFS
* Graph analytics
* Axioms, rules and entailment
** graph metrics
* Programming RDFS in Python
** directed vector-labelled graphs
** analysis frameworks and techniques
* Symbolic learning
** rule, axiom, and hypothesis mining


<!--
Mandatory readings:
Mandatory readings:
* Chapters 6-7 in Allemang & Hendler. ''In text book.''
* Sections 5.1 Graph Analytics and 5.4 Symbolic Learning in Hogan et al.
* [http://www.w3.org/TR/rdf-schema/ W3C's RDF Schema 1.1] (mandatory)
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
* [[:File:S05-RDFS-10.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (cursory, except the axioms and entailments in sections 8 and 9, which we will review in the lecture)
* [https://networkx.org/ NetworkX - Network analysis in Python]
* [https://jena.apache.org/documentation/inference/index.html Reasoners and rules engines: Jena inference support] (cursory; sections 1 and 3 are relevant, but quite hard)
 
* [https://jena.apache.org/documentation/javadoc/jena/ Javadoc] for
==Session 9: KGs in Practice (Guest Lecture)==
** Model (createRDFSModel)
Guest lecture by Sindre Asplem, [https://www.capgemini.com/no-no/ Capgemini].
** InfModel (getRawModel, remove + the same methods as Model)
** RDFS (label, comment, subClassOf, subPropertyOf, domain, range...)
** Reasoner (but we will not use it directly)
: (supplementary, but perhaps necessary for the labs and project)


Case-based examples:
Mandatory readings:
* [[:File:S5_RDFS_Example.pdf | RDFS Eating vegetables case]]
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
-->


==Lecture 6: RDFS Plus==
==Session 10: KG Embeddings==


Themes:
Themes:
* Basic OWL concepts
* Semantic embedding spaces
* Axioms, rules and entailments
* KG embedding techniques
* Programming basic OWL in Python
* Graph neural networks


<!--
Mandatory readings:
Mandatory readings:
* Chapter 8 in Allemang & Hendler. ''In text book.''
* Sections 5.2 Knowledge Graph Embeddings and 5.3 Graph neural networks in Hogan et al.
* [[:File:S06-RDFSPlus-4.pdf | Slides from the lecture.]]
** ''In Section 5.2.1, we focus on the Translational Models. The other models are cursory reading.''
* Towards DataScience introduction: [https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Introduction to Knowledge Graph Embeddings] ([[:file:IntroToKGEmbeddings.pdf | PDF]])
* The slides from the lecture (available under [https://mitt.uib.no/courses/51914/files/folder/Slides Files/Slides in http://mitt.uib.no]).
 
Supplementary readings:
* Towards DataScience introductions:
** [https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08 Introduction to Machine Learning for Beginners] ([[:file:IntroToMachineLearning.pdf | PDF]])
** [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
* [[:file:Mikolov_et_al._-_2013_-_Efficient_Estimation_of_Word_Representations_in_Ve.pdf | Mikolov et al’s original word2vec paper]]
* [[:file:Bordes_et_al._-_Translating_Embeddings_for_Modeling_Multi-relation.pdf | Bordes et al’s original TransE paper]]
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)


Useful materials:
Useful materials:
* [https://jena.apache.org/documentation/javadoc/jena/ Javadoc] for
* [https://pykeen.readthedocs.io/en/stable/index.html PyKEEN] is an alternative Python API. It is similar and may be more up-to-date than TorchKGE.
** OntModel (createOntologyModel)
** OntModelSpec (the different reasoners are outlined [https://jena.apache.org/documentation/inference/index.html here (very long)], OWL_MEM_RULE_INF is a good starting point)
** OWL (defines built-in OWL resources)
** OntClass, Individual, ObjectProperty, DatatypeProperty
: (supplementary, but perhaps necessary for the labs and project)


Case-based examples:
==Session 11: Graph Neural Networks (GNNs) ==
* [[:File:S6_RDFS_Plus_Example.pdf | RDFS Plus People and Person case]]


OWL helpful clarifications:
Themes:
* [[:File:OWL-example_I.pdf | owl:InverseFuctionalProperty vs owl:propertyDisjointWith]]
* Graph neural networks
-->
** recurrent/recursive, convolutional, GATs
* Question answering with GNNs (QA-GNN)
* Open KGs:
** WordNet, BabelNet, ConceptNet
 
Mandatory readings:
* Section 5.3 Graph neural networks in Hogan et al.
 
Useful materials:
* [[:file:Yasunaga2022-QA-GNN-2104.06378v5.pdf | The QA-GNN paper]]
* [https://conceptnet.io/ ConceptNet:] An open, multilingual knowledge graph
* [https://pytorch-geometric.readthedocs.io/en/latest/ PyG Documentation:] PyG (PyTorch Geometric) is a library built upon  PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.


==Lecture 7 and 8: Vocabularies==
==Session 12: KGs and LLMs==


Themes:
Themes:
* LOD vocabularies and ontologies
* Large Language Models (LLMs)
* Combining KGs and Large Language Models (LLMs)
** retrieval augmented knowledge fusion
** end-to-end KG construction
** LLM-augmented KG to text generation
** KG-LLM synergy
 
Mandatory readings:
* Chapter 8 Completion + Correction in Hogan et al.
 
Useful materials:
* [[:file:PanEtAl2023-Unifying_Large_Language_Models_and_Knowledge_Graphs_A_Roadmap.pdf | Pan et al. (2024) ''Unifying large language models and knowledge graphs: A roadmap'']]
* [[:file:Vaswani17-AttentionIsAllYouNeed-1706.03762%281%29.pdf | Vaswani et al. (2017) ''Attention is all you need'']]
* [[:file:HitzlerEtAl-NeuroSymbolicIntegration-swj2291.pdf | Hitzler et al. (2022) ''Neuro-symbolic approaches in artificial intelligence'']]


<!--
<!--
==Session 13: KGs in Practice==
Themes:
* Open KGs
* Enterprise KGs
Mandatory readings:
Mandatory readings:
* Chapters 9-10 and 13 in Allemang & Hendler. ''In text book.''
* Important knowledge graphs:
* [http://lov.okfn.org/dataset/lov/ Linked Open Vocabularies (LOV)]
** Wikidata (https://www.wikidata.org/)
* [http://stats.lod2.eu/ LODstats]
** DBpedia (https://www.dbpedia.org, https://dbpedia.org/page/Bergen)
* [[:File:S07-Vocabularies-21.pdf | Slides from the lecture]]
** GeoNames (https://www.geonames.org/)
** BabelNet (https://babelnet.org/)
** Linked Open Data (LOD) (http://lod-cloud.net)
** Linked Open Vocabularies (LOV, https://lov.linkeddata.es/dataset/lov/)


Useful materials:
Useful materials:
* Vocabularies:
** [http://www.w3.org/2004/02/skos/ SKOS - Simple Knowledge Organization System Home Page]
** [http://schema.org/docs/full.html schema.org - Full Hierarchy]
** [http://dublincore.org/ Dublin Core (DC)]
** [http://xmlns.com/foaf/spec/ Friend of a Friend (FOAF)]
** [https://www.w3.org/2003/01/geo/wgs84_pos geo: World Geodetic Standard (WGS) 84] (and [https://www.w3.org/2003/01/geo/ few more general comments here])
** [https://www.w3.org/TR/vocab-data-cube/ The RDF Data Cube Vocabulary]
** [http://purl.org/vocab/vann/ Annotating vocabulary descriptions (VANN)]
** [https://www.w3.org/2003/06/sw-vocab-status/note Vocabulary Status (VS)]
** [http://creativecommons.org/ns Creative Commons (CC) Vocabulary]
** [http://vocab.deri.ie/void Vocabulary of Interlinked Datasets (VoID)]
** [http://www.w3.org/ns/prov# Provenance Interchange (PROV)]
** [http://motools.sourceforge.net/event/event.html Event Ontology (event)]
** [http://www.w3.org/TR/owl-time/ Time ontology in OWL (time, OWL-time)]
** [http://motools.sourceforge.net/timeline/timeline.html Timeline Ontology (tl)]
** [http://vocab.org/bio/ Biographical Information (BIO)]
** [http://rdfs.org/sioc/spec/ Semantic Interlinked Online Communities (SIOC)]
** [http://bibliontology.com/ Bibliographic Ontology (bibo)]
** [http://www.musicontology.com/ Music Ontology (mo)]
: '''This is what we expect you to know about each vocabulary:''' Its purpose and where and how it can be used. You should know its most central 3-6 classes and properties be able to explain its basic structure. It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart. ''schema.org'' is less important because you have already had about it in INFO116.
-->
-->


==Lecture 9 and 10: Linked Data Resources==
<!--
==Lecture: KG Quality==


Themes:
Themes:
* Important Linked Open Datasets
* KG completion and correction
** DBpedia
* Best practices
** LinkedGeoData
* Access protocols and usage control
** GeoNames
** Wikidata
** and others


<!--
Mandatory readings:
Mandatory readings:
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]
* Chapters 8 Completion + Correction and 9 Best Practices + Access Protocols + Usage Control in Hogan et al.
* [[:File:FarberEtAl-ComparativeSurvey-SWJ2015.pdf | Färber, M., Ell, B., Menne, C., & Rettinger, A. (2015). A Comparative Survey of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web Journal, July.]]
* [http://lod-cloud.net The Linking Open Data (LOD) cloud diagram]
* [http://stats.lod2.eu/ LODstats]
* [[:File:S08-LinkedOpenDatasets-23.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [http://wiki.dbpedia.org/about Dbpedia]
* [https://www.wikidata.org/wiki/Wikidata:Introduction Wikidata]
* [http://www.geonames.org/about.html GeoNames]
* [https://wordnet.princeton.edu/ WordNet - A lexical database for English]
* [http://live.babelnet.org/about BabelNet]
-->
-->


==Lecture 11 and 12: Web APIs==
<!-- ==Lecture 2: Representing KGs (RDF)==


Themes:  
Themes:  
* JSON, JSON-LD
* Resource Description Framework (RDF)
* Semantic web services
* Programming RDF in Python
* Semantic workflows
 
Mandatory readings:
* Chapter 3 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/TR/rdf11-primer/ W3C's RDF 1.1 Primer] until and including 5.1.2 Turtle (but not the rest for now)
* [http://rdflib.readthedocs.io/ RDFlib 7.0.0 documentation], the following pages:
** The main page
** Getting started with RDFLib
** Loading and saving RDF
** Creating RDF triples
** Navigating Graphs
** Utilities and convenience functions
** RDF terms in rdflib
** Namespaces and Bindings
* [[:File:S02-RDF.pdf | Slides from the lecture]]
 
Useful materials:
* [https://rdflib.readthedocs.io/en/stable/apidocs/modules.html RDFLib 7.0.0 packages] (reference for the labs)
* [https://www.ldf.fi/service/rdf-grapher RDF Grapher] for drawing RDF graphs
* [https://issemantic.net/rdf-visualizer RDF Visualizer] for drawing RDF graphs
* [https://www.w3.org/TR/rdf11-concepts/ W3C's RDF 1.1 Concepts and Abstract Syntax]
* An overview page of some other [https://www.w3.org/2018/09/rdf-data-viz/ RDF Data Visualization tools]
* Pages 25-28, 92-100, 125-128, and 164-167 in Blumauer & Nagy (suggested)
-->
 


<!--
<!--
==Lecture 4: Linked Open Data (LOD)==
Themes:
* Linked Open Data(LOD)
* The LOD cloud
* Data provisioning
Mandatory readings ''(both lecture 4 and 5)'':
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/DesignIssues/LinkedData.html Linked Data], Tim Berners-Lee, 2006-07-27.
* [[:File:S04-LOD.pdf | Slides from the lecture]]
Useful materials
* [https://www.ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/ What Are Linked Data and Linked Open Data?]
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]
==Lecture 5: Open Knowledge Graphs I==
Themes:
* Important open KGs (LOD datasets)
** Wikidata
** DBpedia
Mandatory readings:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Important knowledge graphs - and what to read:
** Wikidata (https://www.wikidata.org/):
*** [https://www.wikidata.org/wiki/Wikidata:Introduction Introduction to Wikidata]
*** [https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help SPARQL query service/A gentle introduction to the Wikidata Query Service]
*** example: [https://www.wikidata.org/wiki/Q26793]
** DBpedia (https://www.dbpedia.org):
*** [http://wiki.dbpedia.org/about About Dbpedia]
*** example: [https://dbpedia.org/resource/Bergen]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]
==Lecture 6: Open Knowledge Graphs II==
Themes:
* Important open KGs (LOD datasets)
** DBpedia ''(continued)''
** GeoNames
** the GDELT project
** WordNet
** BabelNet
** ConceptNet
Mandatory readings:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Important knowledge graphs - and what to read:
** GeoNames (https://www.geonames.org/):
*** [http://www.geonames.org/about.html About GeoNames]
*** example: [https://www.geonames.org/3161732/bergen.html]
** GDELT (https://www.gdeltproject.org/)
*** [https://www.gdeltproject.org/ The GDELT Project] - see also the About and Data pages
** WordNet (https://wordnet.princeton.edu/)
*** [https://wordnet.princeton.edu/ WordNet - A lexical database for English]
** BabelNet (https://babelnet.org/):
*** [http://live.babelnet.org/about About BabelNet]
*** [https://babelnet.org/how-to-use How to use]
*** example: [https://babelnet.org/synset?id=bn%3A00010008n&orig=Bergen&lang=EN]
** ConceptNet (http://conceptnet.io)
*** [http://conceptnet.io ConceptNet - An open, multilingual knowledge graph]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]
Useful materials
* Wikidata statistics
** [https://grafana.wikimedia.org/d/000000167/wikidata-datamodel?orgId=1&refresh=30m Entity statistics]
** [https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements?orgId=1&refresh=30m Statement statistics]
* [https://www.dbpedia-spotlight.org/ DBpedia Spotlight]
* GDELT documentation
** [http://data.gdeltproject.org/documentation/GDELT-Event_Codebook-V2.0.pdf Event Codebook (and covers mentions)]
** [http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf CAMEO event codes and other codes]
** [http://data.gdeltproject.org/documentation/GDELT-Global_Knowledge_Graph_Codebook-V2.1.pdf Global Knowledge Graph Codebook]
* Parts 1 and 3 in Blumauer & Nagy's text book (not tightly related to the lecture, but time to finish them by now :-))
==Lecture 7: Enterprise Knowledge Graphs==
Themes:
* Enterprise Knowledge Graphs (EKGs)
* Google’s Knowledge Graph
* Amazon’s Product Graph
* JSON-LD (video presentation)
Mandatory readings:
* [https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ Introducing the Knowledge Graph: Things not Strings], Amit Singhal, Google (2012). ''(The blog post that introduced Google's knowledge graph to the world.)''
* [https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/ A reintroduction to our Knowledge Graph and knowledge panels], Danny Sullivan, Google (2020).
* [https://www.aboutamazon.com/news/innovation-at-amazon/making-search-easier How Amazon’s Product Graph is helping customers find products more easily], Arun Krishnan, Amazon (2018). ''(Short blog post that reviews some central ideas from the AutoKnow research paper listed below.)''
* [https://www.amazon.science/blog/building-product-graphs-automatically Building product graphs automatically], Xin Luna Dong, Amazon (2020).
* [https://json-ld.org/ JSON for Linking Data]
* [[:File:S07-EnterpriseKGs.pdf | Slides from the lecture]]
Supplementary readings:
* Parts 2 and 4 in Blumauer & Nagy's text book (''strongly suggested - this is where Blumauer & Nagy's book is good!'')
* [[:File:Bosch-LIS.pdf | LIS: A knowledge graph-based line information system]] by Grangel-González, I., Rickart, M., Rudolph, O., & Shah, F. (2023, May). In Proceedings of the European Semantic Web Conference (pp. 591-608). Cham: Springer Nature Switzerland.
* [[:File:2006.13473.pdf | AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types]] by Dong, X. L., He, X., Kan, A., Li, X., Liang, Y., Ma, J., ... & Han, J. (2020, August). In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2724-2734). ''Research paper from Amazon about AutoKnow - this is a bit heavy for Bachelor level, but you can have a look :-)''
==Lecture 8: Rules (SHACL and RDFS)==
Themes:
* SHACL and RDFS
* Axioms, rules and entailment
* Programming SHACL and RDFS in Python
Mandatory readings:
Mandatory readings:
* [http://json.org/ JSON Syntax] (mandatory)
* Chapters 7-8 in Allemang, Hendler & Gandon (3rd edition)
* Section 2 in W3C's [https://www.w3.org/TR/json-ld-api/ JSON-LD 1.0 Processing Algorithms and API] (mandatory)
* [https://book.validatingrdf.com/bookHtml011.html Chapter 5 ''SHACL''] in [https://book.validatingrdf.com/index.html Validating RDF] (available online)
* [[:File:S10-Services-7.pdf | Slides from the lecture]]
** Sections 5.1, 5.3-5.5, and 5.6,1-5.6.3
** [[:File:S10-JSONLD.pdf | JSON-LD slides]]
* [http://www.w3.org/TR/rdf-schema/ W3C's RDF Schema 1.1], focus on sections 1-3 and 6
* [[:File:S07-SHACL-RDFS.pdf | Slides from the lecture]]  
 
Useful materials:
Useful materials:
* [http://json-ld.org/spec/latest/json-ld/ JSON-LD 1.1 - A JSON-based Serialization for Linked Data] (supplementary reference)
* Interactive, online [https://shacl.org/playground/ SHACL Playground]
* [http://json-ld.org/ JSON for Linked Data] (supplementary)
* [https://docs.google.com/presentation/d/1weO9SzssxgYp3g_44X1LZsVtL0i6FurQ3KbIKZ8iriQ/ Lab presentation containing a short overview of SHACL and pySHACL]
** [http://www.youtube.com/watch?v=4x_xzT5eF5Q What is Linked Data?] Short video introduction to Linked Data by Manu Sporny
* [https://pypi.org/project/pyshacl/ pySHACL - A Python validator for SHACL at PyPi.org] ''(after installation, go straight to "Python Module Use".)''
** [http://www.youtube.com/watch?v=vioCbTo3C-4 What is JSON-LD?] Short video introduction to JSON-LD by Manu Sporny
* [https://w3c.github.io/data-shapes/shacl/ Shapes Constraint Language (SHACL) (Editor's Draft)]
-->
* [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (''the axioms and entailments in sections 8 and 9, are most important, and we will review them in the lecture'')
* [https://github.com/blazegraph/database/wiki/InferenceAndTruthMaintenance Inference and Thruth Maintenance in Blazegraph]
* [https://github.com/RDFLib/OWL-RL OWL-RL] adds inference capability on top of RDFLib. To use it, copy the ''owlrl'' folder into your project folder, next to your Python files, and import it with ''import owlrl''.
* [https://owl-rl.readthedocs.io/en/latest/owlrl.html OWL-RL documentation] (most likely more detailed than you will need - check the [[Python Examples]] first


==Lecture 13: OWL==
==Lecture 9: Ontologies (OWL)==


Themes:
Themes:
* Advanced OWL
* Basic OWL concepts
* Axioms, rules and entailments
* Axioms, rules and entailments
* Programming advanced OWL in Python
* Programming basic OWL in Python


<!--
Mandatory readings:
Mandatory readings:
* Chapters 11-12 in Allemang & Hendler. ''In text book.''
* Chapter 9-10, 12-13 in Allemang, Hendler & Gandon (3rd edition)
* [[:File:S11-OWL-15-utlagt.pdf | Slides from the lecture]]
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6 and 9-10
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
* [https://protegeproject.github.io/protege/getting-started/ Protégé-OWL Getting Started]
* [[:File:S09-OWL.pdf | Slides from the lecture]]
 
Useful materials (cursory):
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview]
* [https://www.w3.org/TR/owl2-quick-reference/ OWL 2 Quick Reference Guide]
* [https://www.w3.org/TR/owl2-rdf-based-semantics/ OWL2 RDF-Based Semantics]
* The OWL-RL materials (from Lecture 5)
* [http://vowl.visualdataweb.org/v2 VOWL: Visual Notation for OWL Ontologies]
* [http://vowl.visualdataweb.org/webvowl/index.html#sioc WebVOWL]
* [[:File:LohmannEtAl2016-VisualizingOntologiesWithVOWL.pdf | Lohmann et al. (2019): Visualizing Ontologies with VOWL. ''Semantic Web Journal.'']]
* Pages 106-109 in Blumauer & Nagy (suggested)
 
==Lecture 10: Vocabularies==
 
Themes:
* LOD vocabularies and ontologies
 
Mandatory readings:
* Chapters 10-11 in Allemang, Hendler & Gandon (3rd edition)
* [http://lov.okfn.org/dataset/lov/ Linked Open Vocabularies (LOV)]
* Important vocabularies / ontologies:
** [http://xmlns.com/foaf/spec/ Friend of a Friend (FOAF)] (if necessary follow the link to the 2004 version)
** [http://motools.sourceforge.net/event/event.html Event Ontology (event)]
** [http://www.w3.org/TR/owl-time/ Time ontology in OWL (time, OWL-time)]
** [https://www.w3.org/2003/01/geo/ geo: World Geodetic Standard (WGS) 84]
** [http://dublincore.org/ Dublin Core (DC)]
** [http://www.w3.org/2004/02/skos/ SKOS - Simple Knowledge Organization System Home Page]
** [http://rdfs.org/sioc/spec/ Semantic Interlinked Online Communities (SIOC)]
** [http://schema.org/docs/full.html schema.org - Full Hierarchy]
** [http://wikidata.dbpedia.org/services-resources/ontology DBpedia Ontology]
** [http://www.w3.org/ns/prov# Provenance Interchange (PROV)]
** [http://creativecommons.org/ns Creative Commons (CC) Vocabulary]
** ''What we expect you to know about each vocabulary is this:''
*** Its purpose and where and how it can be used.
*** Its most central 3-6 classes and properties be able to explain its basic structure.
*** It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart.
* [[:File:S10-Vocabularies.pdf | Slides from the lecture]]


Useful materials:
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview] (cursory)
* [http://www.w3.org/TR/owl-primer OWL2 Primer] (cursory)
* [https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/ OWL 2 Quick Reference Guide] (cursory)
* [http://vowl.visualdataweb.org/v2 VOWL: Visual Notation for OWL Ontologies] (cursory)
* [http://vowl.visualdataweb.org/webvowl/index.html#sioc WebVOWL] (cursory)
* [https://jena.apache.org/documentation/ontology/ Jena Ontology API] (we will most likely not go into this) (cursory)
-->


==Lecture 14: OWL DL==
==Lecture 11: KG embeddings==


Themes:
Themes:
* Description logic
* KG embeddings
* Decision problems
* Link prediction
* OWL-DL
* TorchKGE
* Programming with OWL-DL reasoners in Python


<!--
Mandatory readings:
Mandatory readings:
* [[:File:S12-OWL-DL-10.pdf | Slides from the lecture]]
* [https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08 Introduction to Machine Learning for Beginners] ([[:file:IntroToMachineLearning.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Introduction to Knowledge Graph Embeddings] ([[:file:IntroToKGEmbeddings.pdf | PDF]])
* [[:file:S11-GraphEmbeddings.pdf | Slides from the lecture]]


Useful materials:
Supplementary readings:
* [[:File:NardiBrachman-IntroductionToDescriptionLogic.pdf | Nardi & Brachman: Introduction to Description Logics. Chapter 1 in Description Logic Handbook.]] ''(cursory)''
* [[:file:Mikolov_et_al._-_2013_-_Efficient_Estimation_of_Word_Representations_in_Ve.pdf | Mikolov et al’s original word2vec paper]]
* [[:File:BaderNutt-BasicDescriptionLogics.pdf | Baader & Nutt: Basic Description Logics. Chapter 2 in Description Logic Handbook.]]
* [[:file:Bordes_et_al._-_Translating_Embeddings_for_Modeling_Multi-relation.pdf | Bordes et al’s original TransE paper]]
** ''Cursory'', quickly gets mathematical after the introduction. In particular, sections 2.2.2.3-4 about fixpoint semantics apply to TBoxes with cyclic definitions, which we do not consider in this course. We also do not consider the stuff about rules, epistemics, and reasoning from section 2.2.5 on.
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)
* [http://www.cs.man.ac.uk/~ezolin/dl/ Complexity of Reasoning in Description Logics. Powered by Evgeny Zolin.] (informative)
-->


==Lecture 15: Ontology Development and Evaluation==
==Lecture 12: KGs and Large Language Models==


Themes:
Themes:
* Ontology Development 101 method


<!--
* What are Large Language Models (LLMs)
* Combining KGs and Large Language Models (LLMs)
** retrieval augmented knowledge fusion
** end-to-end KG construction
** LLM-augmented KG to text generation
 
Mandatory readings:
Mandatory readings:
* Chapters 14-16 in Allemang & Hendler. ''In text book.''
* [http://liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%20and%20why%20we%20need%20it.htm Noy & McGuinness (2001): Ontology Development 101: A Guide to Creating Your First Ontology.] ''Paper.''
* [[:File:S13-OntologyDevelopment-4.pdf | Slides from the lecture]]


Useful materials:
* [[:file:S12-KGsAndLLMs.pdf | Slides from the lecture]]
* [http://www.sciencedirect.com/science/article/pii/S095741741101640X Sicilia et al. (2012): Empirical findings on ontology metrics.] ''Paper.''  (cursory)
* No mandatory readings beyond the slides
 
Supplementary readings:
 
* Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024). [[:file:PanEtAl2023-LLMs_KGs_Opportunities_Challenges.pdf | ''Unifying large language models and knowledge graphs: A roadmap.'']] IEEE Transactions on Knowledge and Data Engineering.
* Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &  Polosukhin, I. (2017). [[:file:NIPS-2017-attention-is-all-you-need-Paper.pdf | ''Attention is all you need.'']]  Advances in neural information processing systems, 30.<br />
-->
-->


&nbsp;
&nbsp;
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2020, Andreas L. Opdahl (c)''</div>
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)''</div>

Latest revision as of 08:26, 6 May 2025

Textbooks

Main course book (the whole book is mandatory reading):

  • Hogan, A. et al. (2021). Knowledge Graphs. Springer. Synthesis Lectures on Data, Semantics, and Knowledge 22, 1–237, DOI: 10.2200/S01125ED1V01Y202109DSK022, Springer. https://kgbook.org/

Supplementary books (not mandatory):

  • Dean Allemang, James Hendler & Fabien Gandon (2020). Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition). ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.
  • Andreas Blumauer and Helmut Nagy (2020). The Knowledge Graph Cookbook - Recipes that Work. mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.

Other materials

In addition, the materials listed below for each lecture are either mandatory or suggested reading. More materials will be added to each lecture in the coming weeks.

The labs, lectures and lectures notes are also part of the curriculum.

Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.

Note: to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.

Lectures

Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Hogan et al. ("Knowledge Graphs") are mandatory, whereas the chapters in Allemang, Hendler & Gandon ("Semantic Web") are suggested.

Session 1: Introduction to KGs

Themes:

  • Introduction to Knowledge Graphs
  • Organisation of the course

Mandatory readings:

Useful materials:

Session 2: Querying and updating KGs (SPARQL)

Themes:

  • SPARQL queries
  • SPARQL Update
  • Programming SPARQL and SPARQL Update in Python

Mandatory readings:

Useful materials:

Session 3: Creating KGs

Themes:

  • Extracting KGs from text
  • Extracting from marked-up sources
  • Extracting from SQL databases and JSON

Mandatory readings:

Useful materials:

Session 4: Validating KGs

Themes:

  • Validating KG schemas (SHACL)
  • Semantic KG schemas/vocabularies (RDFS)

Mandatory readings:

Useful materials:

Session 5: Advanced KGs

Themes:

  • More about RDF, e.g.,
    • identity
    • blank nodes
    • reification
    • higher-arity graphs

Mandatory readings:

Useful materials:

Session 6: Ontologies

Themes:

  • More powerful vocabularies/ontologies (OWL)
  • Creating ontologies

Mandatory readings:

Useful materials:

Session 7: Reasoning

Themes:

  • More about semantic KG schemas (RDFS)
  • Description logic
  • OWL-DL

Mandatory readings:

Useful materials:

Session 8: KG Analytics

Themes:

  • Graph analytics
    • graph metrics
    • directed vector-labelled graphs
    • analysis frameworks and techniques
  • Symbolic learning
    • rule, axiom, and hypothesis mining

Mandatory readings:

Useful materials:

Session 9: KGs in Practice (Guest Lecture)

Guest lecture by Sindre Asplem, Capgemini.

Mandatory readings:

Session 10: KG Embeddings

Themes:

  • Semantic embedding spaces
  • KG embedding techniques
  • Graph neural networks

Mandatory readings:

Supplementary readings:

Useful materials:

  • PyKEEN is an alternative Python API. It is similar and may be more up-to-date than TorchKGE.

Session 11: Graph Neural Networks (GNNs)

Themes:

  • Graph neural networks
    • recurrent/recursive, convolutional, GATs
  • Question answering with GNNs (QA-GNN)
  • Open KGs:
    • WordNet, BabelNet, ConceptNet

Mandatory readings:

  • Section 5.3 Graph neural networks in Hogan et al.

Useful materials:

  • The QA-GNN paper
  • ConceptNet: An open, multilingual knowledge graph
  • PyG Documentation: PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

Session 12: KGs and LLMs

Themes:

  • Large Language Models (LLMs)
  • Combining KGs and Large Language Models (LLMs)
    • retrieval augmented knowledge fusion
    • end-to-end KG construction
    • LLM-augmented KG to text generation
    • KG-LLM synergy

Mandatory readings:

  • Chapter 8 Completion + Correction in Hogan et al.

Useful materials:




 

INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)