Lab Solutions: Difference between revisions

From info216
No edit summary
No edit summary
 
(127 intermediate revisions by 7 users not shown)
Line 1: Line 1:
This page will be updated with Python examples related to the lectures and labs. We will add more examples after each lab has ended. The first examples will use Python's RDFlib. We will introduce other relevant libraries later.
Here we will present suggested solutions after each lab. ''The page will be updated as the course progresses''


<!--
=Getting started (Lab 1)=


==Lecture 1: Python, RDFlib, and PyCharm==
<syntaxhighlight>
 
from rdflib import Graph, Namespace
 
ex = Namespace('http://example.org/')
 
g = Graph()
 
g.bind("ex", ex)
 
# The Mueller Investigation was lead by Robert Mueller
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))
 
# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))


# Paul Manafort was business partner of Rick Gates
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))
# He was campaign chairman for Donald Trump
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))
# He was convicted for bank and tax fraud.
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))
# He pleaded guilty to conspiracy.
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))
# He was sentenced to prison.
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))
# He negotiated a plea agreement.
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))
# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))
# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))
# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
print(g.serialize(format="ttl")) # To screen
#g.serialize("lab1.ttl", format="ttl") # To file
# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo :]:
    print(subject, ex.pleadGuiltyTo, object)
# --- IF you have more time tasks ---
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week
#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil
def graphToImage(graphInput):
    data = {"rdf":graphInput, "from":"ttl", "to":"png"}
    link = "http://www.ldf.fi/service/rdf-grapher"
    response = requests.get(link, params = data, stream=True)
    # print(response.content)
    print(response.raw)
    with open("lab1.png", "wb") as file:
        shutil.copyfileobj(response.raw, file)
graph = g.serialize(format="ttl")
graphToImage(graph)


===Printing the triples of the Graph in a readable way===
<syntaxhighlight>
# The turtle format has the purpose of being more readable for humans.
print(g.serialize(format="turtle").decode())
</syntaxhighlight>
</syntaxhighlight>


===Coding Tasks Lab 1===
=RDF programming with RDFlib (Lab 2)=
 
<syntaxhighlight>
<syntaxhighlight>
from rdflib import Graph, Namespace, URIRef, BNode, Literal
from rdflib import Graph, Namespace, Literal, BNode, XSD, FOAF, RDF, URIRef
from rdflib.namespace import RDF, FOAF, XSD
from rdflib.collection import Collection


g = Graph()
g = Graph()
# Getting the graph created in the first lab
g.parse("lab1.ttl", format="ttl")
ex = Namespace("http://example.org/")
ex = Namespace("http://example.org/")


g.add((ex.Cade, ex.married, ex.Mary))
g.bind("ex", ex)
g.add((ex.France, ex.capital, ex.Paris))
g.bind("foaf", FOAF)
g.add((ex.Cade, ex.age, Literal("27", datatype=XSD.integer)))
g.add((ex.Mary, ex.age, Literal("26", datatype=XSD.integer)))
g.add((ex.Mary, ex.interest, ex.Hiking))
g.add((ex.Mary, ex.interest, ex.Chocolate))
g.add((ex.Mary, ex.interest, ex.Biology))
g.add((ex.Mary, RDF.type, ex.Student))
g.add((ex.Paris, RDF.type, ex.City))
g.add((ex.Paris, ex.locatedIn, ex.France))
g.add((ex.Cade, ex.characteristic, ex.Kind))
g.add((ex.Mary, ex.characteristic, ex.Kind))
g.add((ex.Mary, RDF.type, FOAF.Person))
g.add((ex.Cade, RDF.type, FOAF.Person))


</syntaxhighlight>
# --- Michael Cohen ---
# Michael Cohen was Donald Trump's attorney.
g.add((ex.MichaelCohen, ex.attorneyTo, ex.DonaldTrump))
# He pleaded guilty for lying to Congress.
g.add((ex.MichaelCohen, ex.pleadGuiltyTo, ex.LyingToCongress))
 
# --- Michael Flynn ---
# Michael Flynn was adviser to Donald Trump.
g.add((ex.MichaelFlynn, ex.adviserTo, ex.DonaldTrump))
# He pleaded guilty for lying to the FBI.
g.add((ex.MichaelFlynn, ex.pleadGuiltyTo, ex.LyingToFBI))
# He negotiated a plea agreement.
g.add((ex.MichaelFlynn, ex.negotiated, ex.PleaAgreement))
 
# Change your graph so it represents instances of lying as blank nodes.
# Remove the triples that will be duplicated
g.remove((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.remove((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))
 
# --- Michael Flynn ---
FlynnLying = BNode()
g.add((FlynnLying, ex.crime, ex.LyingToFBI))
g.add((FlynnLying, ex.pleadGulityOn, Literal("2017-12-1", datatype=XSD.date)))
g.add((FlynnLying, ex.liedAbout, Literal("His communications with a former Russian ambassador during the presidential transition", datatype=XSD.string)))
g.add((FlynnLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, FlynnLying))
 
# --- Rick Gates ---
GatesLying = BNode()
Crimes = BNode()
Charged = BNode()
Collection(g, Crimes, [ex.LyingToFBI, ex.Conspiracy])
Collection(g, Charged, [ex.ForeignLobbying, ex.MoneyLaundering, ex.TaxEvasion])
g.add((GatesLying, ex.crime, Crimes))
g.add((GatesLying, ex.chargedWith, Charged))
g.add((GatesLying, ex.pleadGulityOn, Literal("2018-02-23", datatype=XSD.date)))
g.add((GatesLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, GatesLying))
 
# --- Michael Cohen ---
CohenLying = BNode()
g.add((CohenLying, ex.crime, ex.LyingToCongress))
g.add((CohenLying, ex.liedAbout, ex.TrumpRealEstateDeal))
g.add((CohenLying, ex.prosecutorsAlleged, Literal("In an August 2017 letter Cohen sent to congressional committees investigating Russian election interference, he falsely stated that the project ended in January 2016", datatype=XSD.string)))
g.add((CohenLying, ex.mullerInvestigationAlleged, Literal("Cohen falsely stated that he had never agreed to travel to Russia for the real estate deal and that he did not recall any contact with the Russian government about the project", datatype=XSD.string)))
g.add((CohenLying, ex.pleadGulityOn, Literal("2018-11-29", datatype=XSD.date)))
g.add((CohenLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, CohenLying))
 
print(g.serialize(format="ttl"))


==Lecture 2: RDF programming==
#Save (serialize) your graph to a Turtle file.
# g.serialize("lab2.ttl", format="ttl")


===Different ways to create an address===
#Add a few triples to the Turtle file with more information about Donald Trump.
'''
ex:Donald_Trump ex:address [ ex:city ex:Palm_Beach ;
            ex:country ex:United_States ;
            ex:postalCode 33480 ;
            ex:residence ex:Mar_a_Lago ;
            ex:state ex:Florida ;
            ex:streetName "1100 S Ocean Blvd"^^xsd:string ] ;
    ex:previousAddress [ ex:city ex:Washington_DC ;
            ex:country ex:United_States ;
            ex:phoneNumber "1 202 456 1414"^^xsd:integer ;
            ex:postalCode "20500"^^xsd:integer ;
            ex:residence ex:The_White_House ;
            ex:streetName "1600 Pennsylvania Ave."^^xsd:string ];
    ex:marriedTo ex:Melania_Trump;
    ex:fatherTo (ex:Ivanka_Trump ex:Donald_Trump_Jr ex: ex:Tiffany_Trump ex:Eric_Trump ex:Barron_Trump).
'''


<syntaxhighlight>
#Read (parse) the Turtle file back into a Python program, and check that the new triples are there
def serialize_Graph():
    newGraph = Graph()
    newGraph.parse("lab2.ttl")
    print(newGraph.serialize())


from rdflib import Graph, Namespace, URIRef, BNode, Literal
#Don't need this to run until after adding the triples above to the ttl file
from rdflib.namespace import RDF, FOAF, XSD
# serialize_Graph()


g = Graph()
#Write a method (function) that starts with Donald Trump prints out a graph depth-first to show how the other graph nodes are connected to him
ex = Namespace("http://example.org/")
visited_nodes = set()


def create_Tree(model, nodes):
    #Traverse the model breadth-first to create the tree.
    global visited_nodes
    tree = Graph()
    children = set()
    visited_nodes |= set(nodes)
    for s, p, o in model:
        if s in nodes and o not in visited_nodes:
            tree.add((s, p, o))
            visited_nodes.add(o)
            children.add(o)
        if o in nodes and s not in visited_nodes:
            invp = URIRef(f'{p}_inv') #_inv represents inverse of
            tree.add((o, invp, s))
            visited_nodes.add(s)
            children.add(s)
    if len(children) > 0:
        children_tree = create_Tree(model, children)
        for triple in children_tree:
            tree.add(triple)
    return tree


# How to represent the address of Cade Tracey. From probably the worst solution to the best.
def print_Tree(tree, root, indent=0):
    #Print the tree depth-first.
    print(str(root))
    for s, p, o in tree:
        if s==root:
            print('    '*indent + '  ' + str(p), end=' ')
            print_Tree(tree, o, indent+1)
   
tree = create_Tree(g, [ex.Donald_Trump])
print_Tree(tree, ex.Donald_Trump)
</syntaxhighlight>


# Solution 1 -
=SPARQL (Lab 3-4)=
# Make the entire address into one Literal. However, Generally we want to separate each part of an address into their own triples. This is useful for instance if we want to find only the streets where people live.
===List all triples===
<syntaxhighlight lang="SPARQL">
SELECT ?s ?p ?o
WHERE {?s ?p ?o .}
</syntaxhighlight>


g.add((ex.Cade_Tracey, ex.livesIn, Literal("1516_Henry_Street, Berkeley, California 94709, USA")))
===List the first 100 triples===
<syntaxhighlight lang="SPARQL">
SELECT ?s ?p ?o
WHERE {?s ?p ?o .}
LIMIT 100
</syntaxhighlight>


===Count the number of triples===
<syntaxhighlight lang="SPARQL">
SELECT (COUNT(*) as ?count)
WHERE {?s ?p ?o .}
</syntaxhighlight>


# Solution 2 -
===Count the number of indictments===
# Seperate the different pieces information into their own triples
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>


g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
SELECT (COUNT(?ind) as ?amount)
g.add((ex.Cade_tracey, ex.city, Literal("Berkeley")))
WHERE {
g.add((ex.Cade_tracey, ex.state, Literal("California")))
  ?s ns1:outcome ?ind;
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
      ns1:outcome ns1:indictment.
g.add((ex.Cade_tracey, ex.country, Literal("USA")))
}
</syntaxhighlight>


===List the names of everyone who pleaded guilty, along with the name of the investigation===
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>


# Solution 3 - Some parts of the addresses can make more sense to be resources than Literals.
SELECT ?name ?invname
# Larger concepts like a city or state are typically represented as resources rather than Literals, but this is not necesarilly a requirement in the case that you don't intend to say more about them.
WHERE {
  ?s ns1:name ?name;
      ns1:investigation ?invname;
      ns1:outcome ns1:guilty-plea .
}
</syntaxhighlight>


g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
===List the names of everyone who were convicted, but who had their conviction overturned by which president===
g.add((ex.Cade_tracey, ex.city, ex.Berkeley))
<syntaxhighlight lang="SPARQL">
g.add((ex.Cade_tracey, ex.state, ex.California))
PREFIX ns1: <http://example.org#>
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey, ex.country, ex.USA))


SELECT ?name ?president
WHERE {
  ?s ns1:name ?name;
      ns1:president ?president;
      ns1:outcome ns1:conviction;
      ns1:overturned ns1:true.
}
</syntaxhighlight>


# Solution 4
===For each investigation, list the number of indictments made===
# Grouping of the information into an Address. We can Represent the address concept with its own URI OR with a Blank Node.
<syntaxhighlight lang="SPARQL">
# One advantage of this is that we can easily remove the entire address, instead of removing each individual part of the address.  
PREFIX ns1: <http://example.org#>
# Solution 4 or 5 is how I would recommend to make addresses. Here, ex.CadeAddress could also be called something like ex.address1 or so on, if you want to give each address a unique ID.


# Address URI - CadeAdress
SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
  ?s ns1:investigation ?invs;
      ns1:outcome ns1:indictment .
}
GROUP BY ?invs
</syntaxhighlight>


g.add((ex.Cade_Tracey, ex.address, ex.CadeAddress))
===For each investigation with multiple indictments, list the number of indictments made===
g.add((ex.CadeAddress, RDF.type, ex.Address))
<syntaxhighlight lang="SPARQL">
g.add((ex.CadeAddress, ex.street, Literal("1516 Henry Street")))
PREFIX ns1: <http://example.org#>
g.add((ex.CadeAddress, ex.city, ex.Berkeley))
g.add((ex.CadeAddress, ex.state, ex.California))
g.add((ex.CadeAddress, ex.postalCode, Literal("94709")))
g.add((ex.CadeAddress, ex.country, ex.USA))


# OR
SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
  ?s ns1:investigation ?invs;
      ns1:outcome ns1:indictment .
}
GROUP BY ?invs
HAVING(?count > 1)
</syntaxhighlight>


# Blank node for Address. 
===For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first===
address = BNode()
<syntaxhighlight lang="SPARQL">
g.add((ex.Cade_Tracey, ex.address, address))
PREFIX ns1: <http://example.org#>
g.add((address, RDF.type, ex.Address))
g.add((address, ex.street, Literal("1516 Henry Street", datatype=XSD.string)))
g.add((address, ex.city, ex.Berkeley))
g.add((address, ex.state, ex.California))
g.add((address, ex.postalCode, Literal("94709", datatype=XSD.string)))
g.add((address, ex.country, ex.USA))


SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
  ?s ns1:investigation ?invs;
      ns1:outcome ns1:indictment .
}
GROUP BY ?invs
HAVING(?count > 1)
ORDER BY DESC(?count)
</syntaxhighlight>


# Solution 5 using existing vocabularies for address
===For each president, list the numbers of convictions and of pardons made===
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>


# (in this case https://schema.org/PostalAddress from schema.org).
SELECT ?president (COUNT(?outcome) as ?conviction) (COUNT(?pardon) as
# Also using existing ontology for places like California. (like http://dbpedia.org/resource/California from dbpedia.org)
?pardons)
WHERE {
  ?s ns1:president ?president;
      ns1:outcome ?outcome ;
      ns1:outcome ns1:conviction.
      OPTIONAL{
        ?s ns1:pardoned ?pardon .
        FILTER (?pardon = true)
      }
}
GROUP BY ?president
</syntaxhighlight>


schema = "https://schema.org/"
===Rename mullerkg:name to something like muellerkg:person===
dbp = "https://dpbedia.org/resource/"


g.add((ex.Cade_Tracey, schema.address, ex.CadeAddress))
<syntaxhighlight lang="SPARQL">
g.add((ex.CadeAddress, RDF.type, schema.PostalAddress))
PREFIX ns1: <http://example.org#>
g.add((ex.CadeAddress, schema.streetAddress, Literal("1516 Henry Street")))
g.add((ex.CadeAddress, schema.addresCity, dbp.Berkeley))
g.add((ex.CadeAddress, schema.addressRegion, dbp.California))
g.add((ex.CadeAddress, schema.postalCode, Literal("94709")))
g.add((ex.CadeAddress, schema.addressCountry, dbp.United_States))


DELETE{?s ns1:name ?o}
INSERT{?s ns1:person ?o}
WHERE {?s ns1:name ?o}
</syntaxhighlight>
</syntaxhighlight>


===Typed Literals===
===Update the graph so all the investigated person and president nodes become the subjects in foaf:name triples with the corresponding strings===
<syntaxhighlight>
 
from rdflib import Graph, Literal, Namespace
<syntaxhighlight lang="SPARQL">
from rdflib.namespace import XSD
PREFIX ns1: <http://example.org#>
g = Graph()
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ex = Namespace("http://example.org/")
 
#Persons
INSERT {?person foaf:name ?name}
WHERE {
      ?investigation ns1:person ?person .
      BIND(REPLACE(STR(?person), STR(ns1:), "") AS ?name)
}


g.add((ex.Cade, ex.age, Literal(27, datatype=XSD.integer)))
#Presidents
g.add((ex.Cade, ex.gpa, Literal(3.3, datatype=XSD.float)))
INSERT {?president foaf:name ?name}
g.add((ex.Cade, FOAF.name, Literal("Cade Tracey", datatype=XSD.string)))
WHERE {
g.add((ex.Cade, ex.birthday, Literal("2006-01-01", datatype=XSD.date)))
      ?investigation ns1:president ?president .
      BIND(REPLACE(STR(?president), STR(ns1:), "") AS ?name)
}
</syntaxhighlight>
</syntaxhighlight>


===Use INSERT DATA updates to add these triples===


===Writing and reading graphs/files===
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>


<syntaxhighlight>
INSERT DATA {
  # Writing the graph to a file on your system. Possible formats = turtle, n3, xml, nt.
    ns1:George_Papadopoulos ns1:adviserTo ns1:Donald_Trump;
g.serialize(destination="triples.txt", format="turtle")
        ns1:pleadGuiltyTo ns1:LyingToFBI;
        ns1:sentencedTo ns1:Prison.


  # Parsing a local file
    ns1:Roger_Stone a ns1:Republican;
parsed_graph = g.parse(location="triples.txt", format="turtle")
        ns1:adviserTo ns1:Donald_Trump;
        ns1:officialTo ns1:Trump_Campaign;
        ns1:interactedWith ns1:Wikileaks;
        ns1:providedTestimony ns1:House_Intelligence_Committee;
        ns1:clearedOf ns1:AllCharges.
}


  # Parsing a remote endpoint like Dbpedia
#To test if added
dbpedia_graph = g.parse("http://dbpedia.org/resource/Pluto")
SELECT ?p ?o
WHERE {ns1:Roger_Stone ?p ?o .}
</syntaxhighlight>
</syntaxhighlight>


===Use DELETE DATA and then INSERT DATA updates to correct that Roger Stone was cleared of all charges===


===Collection Example===
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>


<syntaxhighlight>
DELETE DATA {
from rdflib import Graph, Namespace
      ns1:Roger_Stone ns1:clearedOf ns1:AllCharges .
from rdflib.collection import Collection
}


INSERT DATA {
      ns1:Roger_Stone ns1:indictedFor ns1:ObstructionOfJustice,
                                      ns1:WitnessTampering,
                                      ns1:FalseStatements.
}


# Sometimes we want to add many objects or subjects for the same predicate at once.
#The task specifically requested DELETE DATA & INSERT DATA, put below is
# In these cases we can use Collection() to save some time.
a more efficient solution
# In this case I want to add all countries that Emma has visited at once.


b = BNode()
DELETE{ns1:Roger_Stone ns1:clearedOf ns1:AllCharges.}
g.add((ex.Emma, ex.visit, b))
INSERT{
Collection(g, b,
  ns1:Roger_Stone ns1:indictedFor ns1:ObstructionOfJustice,
    [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])
                                  ns1:WitnessTampering,
                                  ns1:FalseStatements.
}
WHERE{ns1:Roger_Stone ns1:clearedOf ns1:AllCharges.}
</syntaxhighlight>


# OR
===Use a DESCRIBE query to show the updated information about Roger Stone===


g.add((ex.Emma, ex.visit, ex.EmmaVisits))
<syntaxhighlight lang="SPARQL">
Collection(g, ex.EmmaVisits,
PREFIX ns1: <http://example.org#>
    [ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])


DESCRIBE ?o
WHERE {ns1:Roger_Stone ns1:indictedFor ?o .}
</syntaxhighlight>
</syntaxhighlight>


==Lecture 3: SPARQL==
===Use a CONSTRUCT query to create a new RDF group with triples only about Roger Stone===


===SPARQL queries from the lecture===
<syntaxhighlight lang="SPARQL">
<syntaxhighlight>
PREFIX ns1: <http://example.org#>
SELECT DISTINCT ?p WHERE {
 
    ?s ?p ?o .
CONSTRUCT {
  ns1:Roger_Stone ?p ?o.
  ?s ?p2 ns1:Roger_Stone.
}
WHERE {
  ns1:Roger_Stone ?p ?o .
  ?s ?p2 ns1:Roger_Stone
}
}
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
===Write a DELETE/INSERT statement to change one of the prefixes in your graph===
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
<syntaxhighlight lang="SPARQL">
PREFIX ns1: <http://example.org#>
PREFIX dbp: <https://dbpedia.org/page/>


SELECT DISTINCT ?t WHERE {
DELETE {?s ns1:person ?o1}
    ?s rdf:type ?t .
INSERT {?s ns1:person ?o2}
WHERE{
  ?s ns1:person ?o1 .
  BIND (IRI(replace(str(?o1), str(ns1:), str(dbp:)))  AS ?o2)
}
}
#This update changes the object in triples with ns1:person as the
predicate. It changes it's prefix of ns1 (which is the
"shortcut/shorthand" for example.org) to the prefix dbp (dbpedia.org)
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
===Write an INSERT statement to add at least one significant date to the Mueller investigation, with literal type xsd:date. Write a DELETE/INSERT statement to change the date to a string, and a new DELETE/INSERT statement to change it back to xsd:date. ===
PREFIX owl: <http://www.w3.org/2002/07/owl#>
 
CONSTRUCT {  
<syntaxhighlight lang="SPARQL">
    ?s owl:sameAs ?o2 .
#Whilst this solution is not exactly what the task asks for, I feel like
} WHERE {
this is more appropiate given the dataset. The following update
    ?s owl:sameAs ?o .
changes the objects that uses the cp_date as predicate from a URI, to a
    FILTER(REGEX(STR(?o), "^http://www\\.", "s"))
literal with date as it's datatype
    BIND(URI(REPLACE(STR(?o), "^http://www\\.", "http://", "s")) AS ?o2)
 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
 
DELETE {?s ns1:cp_date ?o}
INSERT{?s ns1:cp_date ?o3}
WHERE{
  ?s ns1:cp_date ?o .
  BIND (replace(str(?o), str(ns1:), "") AS ?o2)
  BIND (STRDT(STR(?o2), xsd:date) AS ?o3)
}
 
#To test:
 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
 
SELECT ?s ?o
WHERE{
  ?s ns1:cp_date ?o.
  FILTER(datatype(?o) = xsd:date)
}
 
#To change it to an integer, use the following code, and to change it
back to date, swap "xsd:integer" to "xsd:date"
 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
 
DELETE {?s ns1:cp_date ?o}
INSERT{?s ns1:cp_date ?o2}
WHERE{
  ?s ns1:cp_date ?o .
  BIND (STRDT(STR(?o), xsd:integer) AS ?o2)
}
}
</syntaxhighlight>
</syntaxhighlight>


===Select all contents of lists (rdfllib.Collection)===
=SPARQL Programming (Lab 5)=
 
<syntaxhighlight>
<syntaxhighlight>


# rdflib.Collection has a different interntal structure so it requires a slightly more advance query. Here I am selecting all places that Emma has visited.
from rdflib import Graph, Namespace, RDF, FOAF
from SPARQLWrapper import SPARQLWrapper, JSON, POST, GET, TURTLE
 
g = Graph()
g.parse("Russia_investigation_kg.ttl")
 
# ----- RDFLIB -----
ex = Namespace('http://example.org#')
 
NS = {
    '': ex,
    'rdf': RDF,
    'foaf': FOAF,
}


PREFIX ex:   <http://example.org/>
# Print out a list of all the predicates used in your graph.
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
task1 = g.query("""
SELECT DISTINCT ?p WHERE{
    ?s ?p ?o .
}
""", initNs=NS)
 
print(list(task1))
 
# Print out a sorted list of all the presidents represented in your graph.
task2 = g.query("""
SELECT DISTINCT ?president WHERE{
    ?s :president ?president .
}
ORDER BY ?president
""", initNs=NS)
 
print(list(task2))
 
# Create dictionary (Python dict) with all the represented presidents as keys. For each key, the value is a list of names of people indicted under that president.
task3_dic = {}
 
task3 = g.query("""
SELECT ?president ?person WHERE{
    ?s :president ?president;
      :name ?person;
      :outcome :indictment.
}
""", initNs=NS)
 
for president, person in task3:
    if president not in task3_dic:
        task3_dic[president] = [person]
    else:
        task3_dic[president].append(person)
 
print(task3_dic)
 
# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.


SELECT ?visit
# This task is a lot trickier than it needs to be. As far as I'm aware RDFLib has no HAVING support, so a query like this:
WHERE {
task4 = g.query("""
  ex:Emma ex:visit/rdf:rest*/rdf:first ?visit
ASK {
  SELECT (COUNT(?s) as ?count) WHERE{
    ?s :pardoned :true;
    :president :Bill_Clinton  .
    }
    HAVING (?count > 5)
}
}
</syntaxhighlight>
""", initNs=NS)
 
print(task4.askAnswer)
 
# Which works fine in Blazegraph and is a valid SPARQL query will always provide false in RDFLib cause it uses HAVING.
# Instead you have to use a nested SELECT query like below, where you use FILTER instead of HAVING. Donald Trump has no pardons,
# so I have instead chosen Bill Clinton with 13 to check if the query works.
 
task4 = g.query("""
    ASK{
        SELECT ?count WHERE{{
          SELECT (COUNT(?s) as ?count) WHERE{
            ?s :pardoned :true;
                  :president :Bill_Clinton  .
                }}
        FILTER (?count > 5)
        }
    }
""", initNs=NS)
 
print(task4.askAnswer)
 
# Use a DESCRIBE query to create a new graph with information about Donald Trump. Print out the graph in Turtle format.


==Lecture 4- SPARQL PROGRAMMING==
# By all accounts, it seems DESCRIBE querires are yet to be implemented in RDFLib, but they are attempting to implement it:
# https://github.com/RDFLib/rdflib/pull/2221 <--- Issue and proposed solution rasied
# https://github.com/RDFLib/rdflib/commit/2325b4a81724c1ccee3a131067db4fbf9b4e2629 <--- Solution commited to RDFLib
# This solution does not work. However, this proposed solution should work if DESCRIBE is implemented in RDFLib


===SELECTING data from Blazegraph via Python===
# task5 = g.query("""
<syntaxhighlight>
# DESCRIBE :Donald_Trump
# """, initNs=NS)


from SPARQLWrapper import SPARQLWrapper, JSON
# print(task5.serialize())


# This creates a server connection to the same URL that contains the graphic interface for Blazegraph.
# ----- SPARQLWrapper -----
# You also need to add "sparql" to end of the URL like below.


sparql = SPARQLWrapper("http://localhost:9999/blazegraph/sparql")
SERVER = 'http://localhost:7200' #Might need to replace this
REPOSITORY = 'Labs' #Replace with your repository name


# SELECT all triples in the database.
# Query Endpoint
sparql = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}')
# Update Endpoint
sparqlUpdate = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}/statements')


# Ask whether there was an ongoing indictment on the date 1990-01-01.
sparql.setQuery("""
sparql.setQuery("""
     SELECT DISTINCT ?p WHERE {
     PREFIX ns1: <http://example.org#>
    ?s ?p ?o.
    ASK {
        SELECT ?end ?start
        WHERE{
            ?s ns1:investigation_end ?end;
              ns1:investigation_start ?start;
              ns1:outcome ns1:indictment.
            FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date)
    }
     }
     }
""")
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(f"Are there any investigation on the 1990-01-01: {results['boolean']}")
# List ongoing indictments on that date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    SELECT ?s
    WHERE{
        ?s ns1:investigation_end ?end;
          ns1:investigation_start ?start;
          ns1:outcome ns1:indictment.
        FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date)
    }
""")
sparql.setReturnFormat(JSON)
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
results = sparql.query().convert()


print("The ongoing investigations on the 1990-01-01 are:")
for result in results["results"]["bindings"]:
for result in results["results"]["bindings"]:
     print(result["p"]["value"])
     print(result["s"]["value"])
 
# Describe investigation number 100 (muellerkg:investigation_100).
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    DESCRIBE ns1:investigation_100
""")


# SELECT all interests of Cade
sparql.setReturnFormat(TURTLE)
results = sparql.query().convert()


print(results)
# Print out a list of all the types used in your graph.
sparql.setQuery("""
sparql.setQuery("""
     PREFIX ex: <http://example.org/>
     PREFIX ns1: <http://example.org#>
     SELECT DISTINCT ?interest WHERE {
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    ex:Cade ex:interest ?interest.
 
     SELECT DISTINCT ?types
    WHERE{
        ?s rdf:type ?types .  
     }
     }
""")
""")
sparql.setReturnFormat(JSON)
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
results = sparql.query().convert()
rdf_Types = []


for result in results["results"]["bindings"]:
for result in results["results"]["bindings"]:
     print(result["interest"]["value"])
     rdf_Types.append(result["types"]["value"])
</syntaxhighlight>
 
print(rdf_Types)
 
# Update the graph to that every resource that is an object in a muellerkg:investigation triple has the rdf:type muellerkg:Investigation.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
    INSERT{
        ?invest rdf:type ns1:Investigation .
    }
    WHERE{
        ?s ns1:investigation ?invest .
}"""
 
sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()
 
#To Test
sparql.setQuery("""
    prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX ns1: <http://example.org#>
 
    ASK{
        ns1:watergate rdf:type ns1:Investigation.
    }
""")
 
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(results['boolean'])
 
# Update the graph to that every resource that is an object in a muellerkg:person triple has the rdf:type muellerkg:IndictedPerson.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 
    INSERT{
        ?person rdf:type ns1:IndictedPerson .
    }
    WHERE{
        ?s ns1:name ?person .
}"""
 
sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()
 
#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson
 
# Update the graph so all the investigation nodes (such as muellerkg:watergate) become the subject in a dc:title triple with the corresponding string (watergate) as the literal.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX dc: <http://purl.org/dc/elements/1.1/>
 
    INSERT{
        ?invest dc:title ?investString.
    }
    WHERE{
        ?s ns1:investigation ?invest .
        BIND (replace(str(?invest), str(ns1:), "")  AS ?investString)
}"""


===Updating data from Blazegraph via Python===
sparqlUpdate.setQuery(update_str)
<syntaxhighlight>
sparqlUpdate.setMethod(POST)
from SPARQLWrapper import SPARQLWrapper, POST, DIGEST
sparqlUpdate.query()


namespace = "kb"
#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"
sparql = SPARQLWrapper("http://localhost:9999/blazegraph/namespace/"+ namespace + "/sparql")


sparql.setMethod(POST)
# Print out a sorted list of all the indicted persons represented in your graph.
sparql.setQuery("""
sparql.setQuery("""
     PREFIX ex: <http://example.org/>
     PREFIX ns1: <http://example.org#>
     INSERT DATA{
    PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     ex:Cade ex:interest ex:Mathematics.
 
    SELECT ?name
     WHERE{
     ?s  ns1:name ?name;
            ns1:outcome ns1:indictment.
     }
     }
    ORDER BY ?name
""")
""")


results = sparql.query()
sparql.setReturnFormat(JSON)
print(results.response.read())
results = sparql.query().convert()


names = []


for result in results["results"]["bindings"]:
    names.append(result["name"]["value"])
print(names)
# Print out the minimum, average and maximum indictment days for all the indictments in the graph.
sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>
    SELECT (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
        ?s  ns1:indictment_days ?days;
            ns1:outcome ns1:indictment.
   
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
}
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
for result in results["results"]["bindings"]:
    print(f'The longest an investigation lasted was: {result["max"]["value"]}')
    print(f'The shortest an investigation lasted was: {result["min"]["value"]}')
    print(f'The average investigation lasted: {result["avg"]["value"]}')
# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.
sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>
    SELECT ?investigation (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
    ?s  ns1:indictment_days ?days;
        ns1:outcome ns1:indictment;
        ns1:investigation ?investigation.
   
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
    }
    GROUP BY ?investigation
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
for result in results["results"]["bindings"]:
    print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')


</syntaxhighlight>
</syntaxhighlight>


== Lecture 5: RDFS==
=Wikidata SPARQL (Lab 6)=
===Use a DESCRIBE query to retrieve some triples about your entity===


===RDFS inference with RDFLib===
<syntaxhighlight lang="SPARQL">
You can use the OWL-RL package to add inference capabilities to RDFLib. Download it [https://github.com/RDFLib/OWL-RL GitHub] and copy the ''owlrl'' subfolder into your project folder next to your Python files.
DESCRIBE wd:Q42 LIMIT 100
</syntaxhighlight>


[https://owl-rl.readthedocs.io/en/latest/owlrl.html OWL-RL documentation.]
===Use a SELECT query to retrieve the first 100 triples about your entity===


Example program to get started:
<syntaxhighlight lang="SPARQL">
<syntaxhighlight>
SELECT * WHERE {
import rdflib.plugins.sparql.update
  wd:Q42 ?p ?o .
import owlrl.RDFSClosure
} LIMIT 100
</syntaxhighlight>
 
===Write a local SELECT query that embeds a SERVICE query to retrieve the first 100 triples about your entity to your local machine===


g = rdflib.Graph()
<syntaxhighlight lang="SPARQL">
PREFIX wd: <http://www.wikidata.org/entity/>


ex = rdflib.Namespace('http://example.org#')
SELECT * WHERE {
g.bind('', ex)
    SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
        SELECT * WHERE {
            wd:Q42 ?p ?o .
        } LIMIT 100
    }
}
</syntaxhighlight>


g.update("""
===Change the SELECT query to an INSERT query that adds the Wikidata triples your local repository===
PREFIX ex: <http://example.org#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
INSERT DATA {
    ex:Socrates rdf:type ex:Man .
    ex:Man rdfs:subClassOf ex:Mortal .
}""")


# The next three lines add inferred triples to g.
<syntaxhighlight lang="SPARQL">
rdfs = owlrl.RDFSClosure.RDFS_Semantics(g, False, False, False)
PREFIX wd: <http://www.wikidata.org/entity/>
rdfs.closure()
rdfs.flush_stored_triples()


b = g.query("""
INSERT {
PREFIX ex: <http://example.org#>
    wd:Q42 ?p ?o .
ASK {
} WHERE {
    ex:Socrates rdf:type ex:Mortal .
    SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
}  
        SELECT * WHERE {
""")
            wd:Q42 ?p ?o .
print('Result: ' + bool(b))
        } LIMIT 100
    }
}
</syntaxhighlight>
</syntaxhighlight>


===Languaged tagged RDFS labels===  
===Use a FILTER statement to only SELECT primary triples in this sense.===
<syntaxhighlight>
 
from rdflib import Graph, Namespace, Literal
<syntaxhighlight lang="SPARQL">
from rdflib.namespace import RDFS
PREFIX wd: <http://www.wikidata.org/entity/>


g = Graph()
SELECT * WHERE {
ex = Namespace("http://example.org/")
    wd:Q42 ?p ?o .
    FILTER (STRSTARTS(STR(?p), STR(wdt:)))
    FILTER (STRSTARTS(STR(?o), STR(wd:)))
} LIMIT 100
</syntaxhighlight>


g.add((ex.France, RDFS.label, Literal("Frankrike", lang="no")))
===Use Wikidata's in-built SERVICE wikibase:label to get labels for all the object resources===
g.add((ex.France, RDFS.label, Literal("France", lang="en")))
g.add((ex.France, RDFS.label, Literal("Francia", lang="es")))


<syntaxhighlight lang="SPARQL">
PREFIX wd: <http://www.wikidata.org/entity/>


SELECT ?p ?oLabel WHERE {
    wd:Q42 ?p ?o .
    FILTER (STRSTARTS(STR(?p), STR(wdt:)))
    FILTER (STRSTARTS(STR(?o), STR(wd:)))
    SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
} LIMIT 100
</syntaxhighlight>
</syntaxhighlight>


== Lecture 6: RDFS Plus / OWL ==
===Edit your query (by relaxing the FILTER expression) so it also returns triples where the object has DATATYPE xsd:string.===
===RDFS Plus / OWL inference with RDFLib===  


You can use the OWL-RL package again as for Lecture 5.
<syntaxhighlight lang="SPARQL">
PREFIX wd: <http://www.wikidata.org/entity/>


Instead of:  
SELECT ?p ?oLabel ?o WHERE {
<syntaxhighlight>
    wd:Q42 ?p ?o .
# The next three lines add inferred triples to g.
rdfs = owlrl.RDFSClosure.RDFS_Semantics(g, False, False, False)
    FILTER (STRSTARTS(STR(?p), STR(wdt:)))
rdfs.closure()
    FILTER (
rdfs.flush_stored_triples()
      STRSTARTS(STR(?o), STR(wd:)) ||  # comment out this whole line to see only string literals!
      DATATYPE(?o) = xsd:string
    )
    SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
} LIMIT 100
</syntaxhighlight>
</syntaxhighlight>
you can write this to get both RDFS and basic RDFS Plus / OWL inference:
 
<syntaxhighlight>
===Relax the FILTER expression again so it also returns triples with these three predicates (rdfs:label, skos:altLabel and schema:description) ===
# The next three lines add inferred triples to g.
 
owl = owlrl.CombinedClosure.RDFS_OWLRL_Semantics(g, False, False, False)
<syntaxhighlight lang="SPARQL">
owl.closure()
PREFIX wd: <http://www.wikidata.org/entity/>
owl.flush_stored_triples()
 
SELECT ?p ?oLabel ?o WHERE {
    wd:Q42 ?p ?o .
    FILTER (
      (STRSTARTS(STR(?p), STR(wdt:)) &&  # comment out these three lines to see only fingerprint literals!
      STRSTARTS(STR(?o), STR(wd:)) || DATATYPE(?o) = xsd:string)
      ||
      (?p IN (rdfs:label, skos:altLabel, schema:description) &&
      DATATYPE(?o) = rdf:langString && LANG(?o) = "en")
    )
    SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
} LIMIT 100
</syntaxhighlight>
</syntaxhighlight>


Example updates and queries:
===Try to restrict the FILTER expression again so that, when the predicate is rdfs:label, skos:altLabel and schema:description, the object must have LANG "en" ===
<syntaxhighlight>
 
<syntaxhighlight lang="SPARQL">
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX ex: <http://example.org#>
PREFIX schema: <http://schema.org/>


INSERT DATA {
SELECT * WHERE {
     ex:Socrates ex:hasWife ex:Xanthippe .
  SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
    ex:hasHusband owl:inverseOf ex:hasWife .
     SELECT ?p ?oLabel ?o WHERE {
        wd:Q42 ?p ?o .
 
        FILTER (
          (STRSTARTS(STR(?p), STR(wdt:)) &&
          STRSTARTS(STR(?o), STR(wd:)) || DATATYPE(?o) = xsd:string)
          ||
          (?p IN (rdfs:label, skos:altLabel, schema:description) &&
          DATATYPE(?o) = rdf:langString && LANG(?o) = "en")
        )
 
        SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
 
    } LIMIT 100
  }
}
}
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
===Change the SELECT query to an INSERT query that adds the Wikidata triples your local repository ===
ASK {
 
  ex:Xanthippe ex:hasHusband ex:Socrates .
<syntaxhighlight lang="SPARQL">
}
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>
 
INSERT {
  wd:Q42 ?p ?o .
  ?o rdfs:label ?oLabel .
} WHERE {
  SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
    SELECT ?p ?oLabel ?o WHERE {
        wd:Q42 ?p ?o .
 
        FILTER (
          (STRSTARTS(STR(?p), STR(wdt:)) &&
          STRSTARTS(STR(?o), STR(wd:)) || DATATYPE(?o) = xsd:string)
          ||
          (?p IN (rdfs:label, skos:altLabel, schema:description) &&
          DATATYPE(?o) = rdf:langString && LANG(?o) = "en")
        )
 
        SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
 
    } LIMIT 500
  }
}
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
==If you have more time ==
ASK {
===You must therefore REPLACE all wdt: prefixes of properties with wd: prefixes and BIND the new URI AS a new variable, for example ?pw. ===
  ex:Socrates ^ex:hasHusband ex:Xanthippe .
 
  }
<syntaxhighlight lang="SPARQL">
PREFIX wd: <http://www.wikidata.org/entity/>
 
SELECT ?pwLabel ?oLabel WHERE {
    wd:Q42 ?p ?o .
    FILTER (STRSTARTS(STR(?p), STR(wdt:)))
    FILTER (STRSTARTS(STR(?o), STR(wd:)))
    BIND (IRI(REPLACE(STR(?p), STR(wdt:), STR(wd:))) AS ?pw)
 
    SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
   
} LIMIT 100
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
===Now you can go back to the SELECT statement that returned primary triples with only resource objects (not literal objects or fingerprints). Extend it so it also includes primary triples "one step out", i.e., triples where the subjects are objects of triples involving your reference entity. ===
INSERT DATA {
 
    ex:hasWife rdfs:subPropertyOf ex:hasSpouse .
<syntaxhighlight lang="SPARQL">
     ex:hasSpouse rdf:type owl:SymmetricProperty .  
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>
 
INSERT {
  wd:Q42 ?p1 ?o1 .
  ?o1 rdfs:label ?o1Label .
  ?o1 ?p2 ?o2 .
  ?o2 rdfs:label ?o2Label .
} WHERE {
  SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
     SELECT ?p1 ?o1Label ?o1 ?p2 ?o2Label ?o2 WHERE {
        wd:Q42 ?p1 ?o1 .
        ?o1 ?p2 ?o2 .
 
        FILTER (
          STRSTARTS(STR(?p1), STR(wdt:)) &&
          STRSTARTS(STR(?o1), STR(wd:)) &&
          STRSTARTS(STR(?p2), STR(wdt:)) &&
          STRSTARTS(STR(?o2), STR(wd:))
        )
 
        SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
 
    } LIMIT 500
  }
}
}
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
=CSV to RDF (Lab 7)=
ASK {
 
  ex:Socrates ex:hasSpouse ex:Xanthippe .
<syntaxhighlight lang="Python">
}
 
#Imports
import re
from pandas import *
from numpy import nan
from rdflib import Graph, Namespace, URIRef, Literal, RDF, XSD, FOAF
from spotlight import SpotlightException, annotate
 
SERVER = "https://api.dbpedia-spotlight.org/en/annotate"
# Test around with the confidence, and see how many names changes depending on the confidence.
# However, be aware that anything lower than this (0.83) it will replace James W. McCord and other names that includes James with LeBron James
CONFIDENCE = 0.83
 
# This function uses DBpedia Spotlight, which was not a part of the CSV lab this year. 
def annotate_entity(entity, filters={'types': 'DBpedia:Person'}):
annotations = []
try:
annotations = annotate(address=SERVER, text=entity, confidence=CONFIDENCE, filters=filters)
except SpotlightException as e:
print(e)
return annotations
 
g = Graph()
ex = Namespace("http://example.org/")
g.bind("ex", ex)
 
#Pandas' read_csv function to load russia-investigation.csv
df = read_csv("russia-investigation.csv")
#Replaces all instances of nan to None type with numpy's nan
df = df.replace(nan, None)
 
#Function that prepares the values to be added to the graph as a URI (ex infront) or Literal
def prepareValue(row):
if row == None: #none type
value = Literal(row)
elif isinstance(row, str) and re.match(r'\d{4}-\d{2}-\d{2}', row): #date
value = Literal(row, datatype=XSD.date)
elif isinstance(row, bool): #boolean value (true / false)
value = Literal(row, datatype=XSD.boolean)
elif isinstance(row, int): #integer
value = Literal(row, datatype=XSD.integer)
elif isinstance(row, str): #string
value = URIRef(ex + row.replace('"', '').replace(" ", "_").replace(",","").replace("-", "_"))
elif isinstance(row, float): #float
value = Literal(row, datatype=XSD.float)
 
return value
 
#Convert the non-semantic CSV dataset into a semantic RDF
def csv_to_rdf(df):
for index, row in df.iterrows():
id = URIRef(ex + "Investigation_" + str(index))
investigation = prepareValue(row["investigation"])
investigation_start = prepareValue(row["investigation-start"])
investigation_end = prepareValue(row["investigation-end"])
investigation_days = prepareValue(row["investigation-days"])
indictment_days = prepareValue(row["indictment-days "])
cp_date = prepareValue(row["cp-date"])
cp_days = prepareValue(row["cp-days"])
overturned = prepareValue(row["overturned"])
pardoned = prepareValue(row["pardoned"])
american = prepareValue(row["american"])
outcome = prepareValue(row["type"])
name_ex = prepareValue(row["name"])
president_ex = prepareValue(row["president"])
 
#Spotlight Search
name = annotate_entity(str(row['name']))
president = annotate_entity(str(row['president']).replace(".", ""))
#Adds the tripples to the graph
g.add((id, RDF.type, ex.Investigation))
g.add((id, ex.investigation, investigation))
g.add((id, ex.investigation_start, investigation_start))
g.add((id, ex.investigation_end, investigation_end))
g.add((id, ex.investigation_days, investigation_days))
g.add((id, ex.indictment_days, indictment_days))
g.add((id, ex.cp_date, cp_date))
g.add((id, ex.cp_days, cp_days))
g.add((id, ex.overturned, overturned))
g.add((id, ex.pardoned, pardoned))
g.add((id, ex.american, american))
g.add((id, ex.outcome, outcome))
 
#Spotlight search
#Name
try:
g.add((id, ex.person, URIRef(name[0]["URI"])))
except:
g.add((id, ex.person, name_ex))
 
#President
try:
g.add((id, ex.president, URIRef(president[0]["URI"])))
except:
g.add((id, ex.president, president_ex))
 
csv_to_rdf(df)
print(g.serialize())
g.serialize("lab7.ttl", format="ttl")
 
</syntaxhighlight>
 
=JSON-LD (Lab 8)=
== Task 1) Basic JSON-LD ==
 
<syntaxhighlight lang="JSON-LD">
 
{
    "@context": {
        "@base": "http://example.org/",
        "edges": "http://example.org/triple",
        "start": "http://example.org/source",
        "rel": "http://exaxmple.org/predicate",
        "end": "http://example.org/object",
        "Person" : "http://example.org/Person",
        "birthday" : {
            "@id" : "http://example.org/birthday",
            "@type" : "xsd:date"
        },
        "nameEng" : {
            "@id" : "http://example.org/en/name",
            "@language" : "en"
        },
        "nameFr" : {
            "@id" : "http://example.org/fr/name",
            "@language" : "fr"
        },
        "nameCh" : {
            "@id" : "http://example.org/ch/name",
            "@language" : "ch"
        },
        "age" : {
            "@id" : "http://example.org/age",
            "@type" : "xsd:int"
        },
        "likes" : "http://example.org/games/likes",
        "haircolor" : "http://example.org/games/haircolor"
    },
    "@graph": [
        {
            "@id": "people/Jeremy",
            "@type": "Person",
            "birthday" : "1987.1.1",
            "nameEng" : "Jeremy",
            "age" : 26
        },
        {
            "@id": "people/Tom",
            "@type": "Person"
        },
        {
            "@id": "people/Ju",
            "@type": "Person",
            "birthday" : "2001.1.1",
            "nameCh" : "Ju",
            "age" : 22,
            "likes" : "bastketball"
        },
        {
            "@id": "people/Louis",
            "@type": "Person",
            "birthday" : "1978.1.1",
            "haircolor" : "Black",
            "nameFr" : "Louis",
            "age" : 45
        },
        {"edges" : [
        {
            "start" : "people/Jeremy",
            "rel" : "knows",
            "end" : "people/Tom"
        },
        {
            "start" : "people/Tom",
            "rel" : "knows",
            "end" : "people/Louis"
        },
        {
            "start" : "people/Louis",
            "rel" : "teaches",
            "end" : "people/Ju"
        },
        {
            "start" : "people/Ju",
            "rel" : "plays",
            "end" : "people/Jeremy"
        },
        {
            "start" : "people/Ju",
            "rel" : "plays",
            "end" : "people/Tom"
        }
        ]}
    ]
}
 
 
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
== Task 2 & 3) Retrieving JSON-LD from ConceptNet / Programming JSON-LD in Python ==
ASK {
 
  ex:Socrates ^ex:hasSpouse ex:Xanthippe .
<syntaxhighlight lang="Python">
}
 
import rdflib
 
CN_BASE = 'http://api.conceptnet.io/c/en/'
 
g = rdflib.Graph()
g.parse(CN_BASE+'indictment', format='json-ld')
 
# To download JSON object:
 
import json
import requests
 
json_obj = requests.get(CN_BASE+'indictment').json()
 
# To change the @context:
 
context = {
    "@base": "http://ex.org/",
    "edges": "http://ex.org/triple/",
    "start": "http://ex.org/s/",
    "rel": "http://ex.org/p/",
    "end": "http://ex.org/o/",
    "label": "http://ex.org/label"
}
json_obj['@context'] = context
json_str = json.dumps(json_obj)
 
g = rdflib.Graph()
g.parse(data=json_str, format='json-ld')
 
# To extract triples (here with labels):
 
r = g.query("""
        SELECT ?s ?sLabel ?p ?o ?oLabel WHERE {
            ?edge
                <http://ex.org/s/> ?s ;
                <http://ex.org/p/> ?p ;
                <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})
print(r.serialize(format='txt').decode())
 
# Construct a new graph:
 
r = g.query("""
        CONSTRUCT {
            ?s ?p ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
        } WHERE {
            ?edge <http://ex.org/s/> ?s ;
                  <http://ex.org/p/> ?p ;
                  <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})
 
print(r.graph.serialize(format='ttl'))
 
</syntaxhighlight>
</syntaxhighlight>


== Lab 9 ==
=SHACL (Lab 9)=


===Download from BlazeGraph===
<syntaxhighlight lang="Python">


<syntaxhighlight>
from pyshacl import validate
from rdflib import Graph
 
data_graph = Graph()
# parses the Turtle example from the task
data_graph.parse("data_graph.ttl")
 
prefixes = """
@prefix ex: <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
"""
 
shape_graph = """
ex:PUI_Shape
    a sh:NodeShape ;
    sh:targetClass ex:PersonUnderInvestigation ;
    sh:property [
        sh:path foaf:name ;
        sh:minCount 1 ; #Every person under investigation has exactly one name.
        sh:maxCount 1 ; #Every person under investigation has exactly one name.
        sh:datatype rdf:langString ; #All person names must be language-tagged
    ] ;
    sh:property [
        sh:path ex:chargedWith ;
        sh:nodeKind sh:IRI ; #The object of a charged with property must be a URI.
        sh:class ex:Offense ; #The object of a charged with property must be an offense.
    ] .
 
# --- If you have more time tasks ---
ex:User_Shape rdf:type sh:NodeShape;
    sh:targetClass ex:Indictment;
    # The only allowed values for ex:american are true, false or unknown.
    sh:property [
        sh:path ex:american;
        sh:pattern "(true|false|unknown)" ;
    ];
   
    # The value of a property that counts days must be an integer.
    sh:property [
        sh:path ex:indictment_days;
        sh:datatype xsd:integer;
    ]; 
    sh:property [
        sh:path ex:investigation_days;
        sh:datatype xsd:integer;
    ];
   
    # The value of a property that indicates a start date must be xsd:date.
    sh:property [
        sh:path ex:investigation_start;
        sh:datatype xsd:date;
    ];
 
    # The value of a property that indicates an end date must be xsd:date or unknown (tip: you can use sh:or (...) ).
    sh:property [
        sh:path ex:investigation_end;
        sh:or (
        [ sh:datatype xsd:date ]
        [ sh:hasValue "unknown" ]
    )];
   
    # Every indictment must have exactly one FOAF name for the investigated person.
    sh:property [
        sh:path foaf:name;
        sh:minCount 1;
        sh:maxCount 1;
    ];
   
    # Every indictment must have exactly one investigated person property, and that person must have the type ex:PersonUnderInvestigation.
    sh:property [
        sh:path ex:investigatedPerson ;
        sh:minCount 1 ;
        sh:maxCount 1 ;
        sh:class ex:PersonUnderInvestigation ;
        sh:nodeKind sh:IRI ;
    ] ;
 
    # No URI-s can contain hyphens ('-').
    sh:property [
        sh:path ex:outcome ;
        sh:nodeKind sh:IRI ;
        sh:pattern "^[^-]*$" ;
    ] ;
 
    # Presidents must be identified with URIs.
    sh:property [
        sh:path ex:president ;
        sh:minCount 1 ;
        sh:class ex:President ;
        sh:nodeKind sh:IRI ;
    ] .
"""
"""
Dumps a database to a local RDF file.
 
You need to install the SPARQLWrapper package first...
shacl_graph = Graph()
# parses the contents of a shape_graph you made in the previous task
shacl_graph.parse(data=prefixes+shape_graph)
 
# uses pySHACL's validate method to apply the shape_graph constraints to the data_graph
results = validate(
    data_graph,
    shacl_graph=shacl_graph,
    inference='both'
)
 
# prints out the validation result
boolean_value, results_graph, results_text = results
 
# print(boolean_value)
print(results_graph.serialize(format='ttl'))
# print(results_text)
 
#Write a SPARQL query to print out each distinct sh:resultMessage in the results_graph
distinct_messages = """
PREFIX sh: <http://www.w3.org/ns/shacl#>
 
SELECT DISTINCT ?message WHERE {
    [] sh:result / sh:resultMessage ?message .
}
"""
"""
messages = results_graph.query(distinct_messages)
for row in messages:
    print(row.message)


import datetime
#each sh:resultMessage in the results_graph once, along with the number of times that message has been repeated in the results
from SPARQLWrapper import SPARQLWrapper, RDFXML
count_messages = """
PREFIX sh: <http://www.w3.org/ns/shacl#>


# your namespace, the default is 'kb'
SELECT ?message (COUNT(?node) AS ?num_messages) WHERE {
ns = 'kb'
    [] sh:result ?result .
    ?result sh:resultMessage ?message ;
            sh:focusNode ?node .
}
GROUP BY ?message
ORDER BY DESC(?count) ?message
"""


# the SPARQL endpoint
messages = results_graph.query(count_messages)
endpoint = 'http://info216.i2s.uib.no/bigdata/namespace/' + ns + '/sparql'
for row in messages:
    print("COUNT    MESSAGE")
    print(row.num_messages, "      ", row.message)


# - the endpoint just moved, the old one was:
# endpoint = 'http://i2s.uib.no:8888/bigdata/namespace/' + ns + '/sparql'


# create wrapper
</syntaxhighlight>
wrapper = SPARQLWrapper(endpoint)


# prepare the SPARQL update
=RDFS (Lab 10)=
wrapper.setQuery('CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o }')
wrapper.setReturnFormat(RDFXML)


# execute the SPARQL update and convert the result to an rdflib.Graph
<syntaxhighlight lang="Python">
graph = wrapper.query().convert()


# the destination file, with code to make it timestamped
import owlrl
destfile = 'rdf_dumps/slr-kg4news-' + datetime.datetime.now().strftime('%Y%m%d-%H%M') + '.rdf'
from rdflib import Graph, RDF, Namespace, Literal, XSD, FOAF, RDFS
from rdflib.collection import Collection


# serialize the result to file
g = Graph()
graph.serialize(destination=destfile, format='ttl')
ex = Namespace('http://example.org/')
 
g.bind("ex", ex)
g.bind("foaf", FOAF)
 
 
NS = {
    'ex': ex,
    'rdf': RDF,
    'rdfs': RDFS,
    'foaf': FOAF,
}
 
#Write a small function that computes the RDFS closure on your graph.
def flush():
    engine = owlrl.RDFSClosure.RDFS_Semantics(g, False, False, False)
    engine.closure()
    engine.flush_stored_triples()
 
#Rick Gates was charged with money laundering and tax evasion.
g.add((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
 
#When one thing that is charged with another thing,
g.add((ex.chargedWith, RDFS.domain, ex.PersonUnderInvestigation))  #the first thing (subject) is a person under investigation and
g.add((ex.chargedWith, RDFS.range, ex.Offense))  #the second thing (object) is an offense.
 
#Write a SPARQL query that checks the RDF type(s) of Rick Gates and money laundering in your RDF graph.
print(g.query('ASK {ex:Rick_Gates rdf:type ex:PersonUnderInvestigation}', initNs=NS).askAnswer)
print(g.query('ASK {ex:MoneyLaundering rdf:type ex:Offense}', initNs=NS).askAnswer)
flush()
print(g.query('ASK {ex:Rick_Gates rdf:type ex:PersonUnderInvestigation}', initNs=NS).askAnswer)
print(g.query('ASK {ex:MoneyLaundering rdf:type ex:Offense}', initNs=NS).askAnswer)
 
#A person under investigation is a FOAF person
g.add((ex.PersonUnderInvestigation, RDFS.subClassOf, FOAF.Person))
print(g.query('ASK {ex:Rick_Gates rdf:type foaf:Person}', initNs=NS).askAnswer)
flush()
print(g.query('ASK {ex:Rick_Gates rdf:type foaf:Person}', initNs=NS).askAnswer)
 
#Paul Manafort was convicted for tax evasion.
g.add((ex.Paul_Manafort, ex.convictedFor, ex.TaxEvasion))
#the first thing is also charged with the second thing
g.add((ex.convictedFor, RDFS.subPropertyOf, ex.chargedWith))
flush()
print(g.query('ASK {ex:Paul_Manafort ex:chargedWith ex:TaxEvasion}', initNs=NS).askAnswer)
 
print(g.serialize())


# report and quit
print('Wrote %u triples to file %s .' %
      (len(res), destfile))
</syntaxhighlight>
</syntaxhighlight>


<syntaxhighlight>
=OWL 1 (Lab 11)=
# Lab 9 - Semantic Lifting of CSV
<syntaxhighlight lang="Python">
from rdflib import Graph, Literal, Namespace, URIRef
 
import pandas as pd
from rdflib import Graph, RDFS, Namespace, RDF, FOAF, BNode, OWL, URIRef, Literal, XSD
from rdflib.collection import Collection
import owlrl
 
g = Graph()
g = Graph()
ex = Namespace("http://example.org/")
ex = Namespace('http://example.org/')
schema = Namespace('http://schema.org/')
dbr = Namespace('https://dbpedia.org/page/')
 
g.bind("ex", ex)
g.bind("ex", ex)
# g.bind("schema", schema)
g.bind("foaf", FOAF)
# Donald Trump and Robert Mueller are two different persons.
g.add((ex.Donald_Trump, OWL.differentFrom, ex.Robert_Mueller))
# Actually, all the names mentioned in connection with the Mueller investigation refer to different people.
b1 = BNode()
b2 = BNode()
Collection(g, b2, [ex.Robert_Mueller, ex.Paul_Manafort, ex.Rick_Gates, ex.George_Papadopoulos, ex.Michael_Flynn, ex.Michael_Cohen, ex.Roger_Stone, ex.Donald_Trump])
g.add((b1, RDF.type, OWL.AllDifferent))
g.add((b1, OWL.distinctMembers, b2))
# All these people are foaf:Persons as well as schema:Persons
g.add((FOAF.Person, OWL.equivalentClass, schema.Person))
# Tax evation is a kind of bank and tax fraud.
g.add((ex.TaxEvation, RDFS.subClassOf, ex.BankFraud))
g.add((ex.TaxEvation, RDFS.subClassOf, ex.TaxFraud))
# The Donald Trump involved in the Mueller investigation is dbpedia:Donald_Trump and not dbpedia:Donald_Trump_Jr.
g.add((ex.Donald_Trump, OWL.sameAs, dbr.Donald_Trump))
g.add((ex.Donald_Trump, OWL.differentFrom, URIRef(dbr + "Donald_Trump_Jr.")))
# Congress, FBI and the Mueller investigation are foaf:Organizations.
g.add((ex.Congress, RDF.type, FOAF.Organization))
g.add((ex.FBI, RDF.type, FOAF.Organization))
g.add((ex.Mueller_Investigation, RDF.type, FOAF.Organization))
# Nothing can be both a person and an organization.
g.add((FOAF.Person, OWL.disjointWith, FOAF.Organization))
# Leading an organization is a way of being involved in an organization.
g.add((ex.leading, RDFS.subPropertyOf, ex.involved))
# Being a campaign manager or an advisor for is a way of supporting someone.
g.add((ex.campaignManagerTo, RDFS.subPropertyOf, ex.supports))
g.add((ex.advisorTo, RDFS.subPropertyOf, ex.supports))
# Donald Trump is a politician and a Republican.
g.add((ex.Donald_Trump, RDF.type, ex.Politician))
g.add((ex.Donald_Trump, RDF.type, ex.Republican))
# A Republican politician is both a politician and a Republican.
g.add((ex.RepublicanPolitician, RDFS.subClassOf, ex.Politician))
g.add((ex.RepublicanPolitician, RDFS.subClassOf, ex.Republican))
#hasBusinessPartner
g.add((ex.Paul_Manafort, ex.hasBusinessPartner, ex.Rick_Gates))
g.add((ex.hasBusinessPartner, RDF.type, OWL.SymmetricProperty))
g.add((ex.hasBusinessPartner, RDF.type, OWL.IrreflexiveProperty))


# Load the CSV data as a pandas Dataframe.
#adviserTo
csv_data = pd.read_csv("task1.csv")
g.add((ex.Michael_Flynn, ex.adviserTo, ex.Donald_Trump))
# Here I deal with spaces in the data. I replace them with "_" so that URI's become valid.
g.add((ex.adviserTo, RDF.type, OWL.IrreflexiveProperty))
csv_data = csv_data.replace(to_replace =" ", value ="_", regex=True)
# Not necessarily asymmetric as it's not a given that they couldn't be advisors to each other 
# Here I mark all missing/empty data as "unknown". This makes it easy to delete triples containing this later.
csv_data = csv_data.fillna("unknown")


# Loop through the CSV data, and then make RDF triples.
#wasLyingTo
for index, row in csv_data.iterrows():
g.add((ex.Rick_Gates_Lying, ex.wasLyingTo, ex.FBI))
    # The names of the people act as subjects.
g.add((ex.wasLyingTo, RDF.type, OWL.IrreflexiveProperty))
    subject = row['Name']
# Not asymmetric as the subject and object could lie to each other; also in this context, the FBI can lie to you
    # Create triples: e.g. "Regina - gender - "F""
    g.add((URIRef(ex + subject), URIRef(ex + "gender"), Literal(row["Gender"])))
    g.add((URIRef(ex + subject), URIRef(ex + "country"), URIRef(ex + row["Country"])))
    g.add((URIRef(ex + subject), URIRef(ex + "town"), URIRef(ex + row["Town"])))


    # Interest and expertise data have multiple values for each row. Therefore we want to split
#presidentOf
    # each interest/expertise into individual triples
g.add((ex.Donald_Trump, ex.presidentOf, ex.USA))
    interests = row["Interests"]
g.add((ex.presidentOf, RDF.type, OWL.AsymmetricProperty))
    interests = interests.split(",_")
g.add((ex.presidentOf, RDF.type, OWL.IrreflexiveProperty))
    for interest in interests:
g.add((ex.presidentOf, RDF.type, OWL.FunctionalProperty)) #can only be president of one country
        # title() simply makes the word start with capital letter, for consistency.
#not inversefunctionalproperty as Bosnia has 3 presidents https://www.culturalworld.org/do-any-countries-have-more-than-one-president.htm
        interest = interest.title()
        g.add((URIRef(ex + subject), URIRef(ex + "interest"), URIRef(ex + interest)))


    expertises = row["Expertises"]
#hasPresident
    expertises = expertises.split(",_")
g.add((ex.USA, ex.hasPresident, ex.Donald_Trump))
    for expertise in expertises:
g.add((ex.hasPresident, RDF.type, OWL.AsymmetricProperty))
        expertise = expertise.title()
g.add((ex.hasPresident, RDF.type, OWL.IrreflexiveProperty))
        g.add((URIRef(ex + subject), URIRef(ex + "expertise"), URIRef(ex + expertise)))  
g.add((ex.hasPresident, RDF.type, OWL.InverseFunctionalProperty)) #countries do not share their president with another
#not functionalproperty as a country (Bosnia) can have more than one president
 
#Closure
owlrl.DeductiveClosure(owlrl.OWLRL_Semantics).expand(g)
 
#Serialization
print(g.serialize(format="ttl"))
# g.serialize("lab8.xml", format="xml") #serializes to XML file


# I remove triples that I marked as unknown earlier.
g.remove((None, None, URIRef("http://example.org/Unknown")))
# Clean printing of the graph.
print(g.serialize(format="turtle").decode())
</syntaxhighlight>
</syntaxhighlight>


<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2020. All code examples are [https://creativecommons.org/choose/zero/ CC0].'' </div>
=OWL 2 (Lab 12)=
<syntaxhighlight lang="Python">
 
@prefix : <http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#> .
@prefix dc: <http://purl.org/dc/terms#> .
@prefix io: <http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@base <http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#> .
 
<http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology> rdf:type owl:Ontology .
 
#################################################################
#    Object Properties
#################################################################
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#indictedIn
io:indictedIn rdf:type owl:ObjectProperty ;
              rdfs:subPropertyOf io:involvedIn ;
              rdfs:domain io:InvestigatedPerson ;
              rdfs:range io:Investigation .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#investigating
io:investigating rdf:type owl:ObjectProperty ;
                rdfs:subPropertyOf io:involvedIn ;
                rdfs:domain io:Investigator ;
                rdfs:range io:Investigation .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#involvedIn
io:involvedIn rdf:type owl:ObjectProperty ;
              rdfs:domain foaf:Person ;
              rdfs:range io:Investigation .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#leading
io:leading rdf:type owl:ObjectProperty ;
          rdfs:subPropertyOf io:investigating ;
          rdfs:domain io:InvestigationLeader ;
          rdfs:range io:Investigation .
 
 
#################################################################
#    Data properties
#################################################################
 
###  http://purl.org/dc/elements/1.1/description
<http://purl.org/dc/elements/1.1/description> rdf:type owl:DatatypeProperty ;
                                              rdfs:domain io:Investigation ;
                                              rdfs:range xsd:string .
 
 
###  http://www.w3.org/ns/prov#endedAtTime
prov:endedAtTime rdf:type owl:DatatypeProperty ,
                          owl:FunctionalProperty ;
                rdfs:domain io:Investigation ;
                rdfs:range xsd:dateTime .
 
 
###  http://www.w3.org/ns/prov#startedAtTime
prov:startedAtTime rdf:type owl:DatatypeProperty ,
                            owl:FunctionalProperty ;
                  rdfs:domain io:Investigation ;
                  rdfs:range xsd:dateTime .
 
 
###  http://xmlns.com/foaf/0.1/name
foaf:name rdf:type owl:DatatypeProperty ;
          rdfs:domain foaf:Person ;
          rdfs:range xsd:string .
 
 
###  http://xmlns.com/foaf/0.1/title
foaf:title rdf:type owl:DatatypeProperty ;
          rdfs:domain io:Investigation ;
          rdfs:range xsd:string .
 
 
#################################################################
#    Classes
#################################################################
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#InvestigatedPerson
io:InvestigatedPerson rdf:type owl:Class ;
                      rdfs:subClassOf io:Person ;
                      owl:disjointWith io:Investigator .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#Investigation
io:Investigation rdf:type owl:Class .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#InvestigationLeader
io:InvestigationLeader rdf:type owl:Class ;
                      rdfs:subClassOf io:Investigator .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#Investigator
io:Investigator rdf:type owl:Class ;
                rdfs:subClassOf io:Person .
 
 
###  http://www.semanticweb.org/bruker/ontologies/2023/2/InvestigationOntology#Person
io:Person rdf:type owl:Class ;
          rdfs:subClassOf foaf:Person .
 
 
###  http://xmlns.com/foaf/0.1/Person
foaf:Person rdf:type owl:Class .
 
 
#################################################################
#    Individuals
#################################################################
 
###  http://dbpedia.org/resource/Donald_Trump
dbr:Donald_Trump rdf:type owl:NamedIndividual ;
                foaf:name "Donald Trump" .
 
 
###  http://dbpedia.org/resource/Elizabeth_Prelogar
dbr:Elizabeth_Prelogar rdf:type owl:NamedIndividual ;
                      io:investigating <http://dbpedia.org/resource/Special_Counsel_investigation_(2017–2019)> ;
                      foaf:name "Elizabeth Prelogar" .
 
 
###  http://dbpedia.org/resource/Michael_Flynn
dbr:Michael_Flynn rdf:type owl:NamedIndividual ;
                  foaf:name "Michael Flynn" .
 
 
###  http://dbpedia.org/resource/Paul_Manafort
dbr:Paul_Manafort rdf:type owl:NamedIndividual ;
                  io:indictedIn <http://dbpedia.org/resource/Special_Counsel_investigation_(2017–2019)> ;
                  foaf:name "Paul Manafort" .
 
 
###  http://dbpedia.org/resource/Robert_Mueller
dbr:Robert_Mueller rdf:type owl:NamedIndividual ;
                  io:leading <http://dbpedia.org/resource/Special_Counsel_investigation_(2017–2019)> ;
                  foaf:name "Robert Mueller" .
 
 
###  http://dbpedia.org/resource/Roger_Stone
dbr:Roger_Stone rdf:type owl:NamedIndividual ;
                foaf:name "Roger Stone" .
 
 
###  http://dbpedia.org/resource/Special_Counsel_investigation_(2017–2019)
<http://dbpedia.org/resource/Special_Counsel_investigation_(2017–2019)> rdf:type owl:NamedIndividual ;
                                                                        foaf:title "Mueller Investigation" .
 
 
#################################################################
#    General axioms
#################################################################
 
[ rdf:type owl:AllDifferent ;
  owl:distinctMembers ( dbr:Donald_Trump
                        dbr:Elizabeth_Prelogar
                        dbr:Michael_Flynn
                        dbr:Paul_Manafort
                        dbr:Robert_Mueller
                        dbr:Roger_Stone
                      )
] .
 
 
###  Generated by the OWL API (version 4.5.25.2023-02-15T19:15:49Z) https://github.com/owlcs/owlapi
 
</syntaxhighlight>
 
=Using Graph Embeddings (Lab 13)=
 
https://colab.research.google.com/drive/1WkRJUeUBVF5yVv7o0pOKfsd4pqG6369k
 
=Training Graph Embeddings (Lab 14)=
 
https://colab.research.google.com/drive/1jKpzlQ7gYTVzgphJsrK5iuMpFhkrY96q
-->

Latest revision as of 10:56, 20 January 2025

Here we will present suggested solutions after each lab. The page will be updated as the course progresses