Lab Solutions: Difference between revisions

From info216
(Added proposed solution for Lab 4)
 
(47 intermediate revisions by 4 users not shown)
Line 1: Line 1:
This page will be updated with Python examples related to the labs as the course progresses.
Here we will present suggested solutions after each lab. ''The page will be updated as the course progresses''
 
=[[/info216.wiki.uib.no/Lab: Getting started with VSCode, Python and RDFlib|1 Lab: Getting started with VSCode, Python and RDFlib]] =
=Examples from the lectures=
 
==Lecture 1: Introduction to KGs==
Turtle example:
<syntaxhighlight>
<syntaxhighlight>
@prefix ex: <http://example.org/> .
ex:Roger_Stone
    ex:name "Roger Stone" ;
    ex:occupation ex:lobbyist ;
    ex:significant_person ex:Donald_Trump .
ex:Donald_Trump
    ex:name "Donald Trump" .
</syntaxhighlight>


==Lecture 2: RDF==
from rdflib import Graph, Namespace
Blank nodes for anonymity, or when we have not decided on a URI:
<syntaxhighlight lang="Python">
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD


EX = Namespace('http://example.org/')
ex = Namespace('http://example.org/')


g = Graph()
g = Graph()
g.bind('ex', EX)  # this is why the line '@prefix ex: <http://example.org/> .'
                  # and the 'ex.' prefix are used when we print out Turtle later


robertMueller = BNode()
g.bind("ex", ex)
g.add((robertMueller, RDF.type, EX.Human))
g.add((robertMueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((robertMueller, EX.position_held, Literal('Director of the Federal Bureau of Investigation', lang='en')))
 
print(g.serialize(format='turtle'))
</syntaxhighlight>
 
Blank nodes used to group related properties:
<syntaxhighlight>
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
 
EX = Namespace('http://example.org/')
 
g = Graph()
g.bind('ex', EX)


# This is a task in Exercise 2
# The Mueller Investigation was lead by Robert Mueller
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))


print(g.serialize(format='turtle'))
# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
</syntaxhighlight>
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))


Literals:
# Paul Manafort was business partner of Rick Gates
<syntaxhighlight>
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD


EX = Namespace('http://example.org/')
# He was campaign chairman for Donald Trump
 
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))
g = Graph()
g.bind('ex', EX)
 
g.add((EX.Robert_Mueller, RDF.type, EX.Human))
g.add((EX.Robert_Mueller, FOAF.name, Literal('Robert Mueller', lang='en')))
g.add((EX.Robert_Mueller, FOAF.name, Literal('رابرت مولر', lang='fa')))
g.add((EX.Robert_Mueller, DC.description, Literal('sixth director of the FBI', datatype=XSD.string)))
g.add((EX.Robert_Mueller, EX.start_time, Literal(2001, datatype=XSD.integer)))
 
print(g.serialize(format='turtle'))
</syntaxhighlight>
 
Alternative container (open):
<syntaxhighlight>
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
 
EX = Namespace('http://example.org/')
 
g = Graph()
g.bind('ex', EX)
 
muellerReportArchives = BNode()
g.add((muellerReportArchives, RDF.type, RDF.Alt))
 
archive1 = 'https://archive.org/details/MuellerReportVolume1Searchable/' \
                    'Mueller%20Report%20Volume%201%20Searchable/'
archive2 = 'https://edition.cnn.com/2019/04/18/politics/full-mueller-report-pdf/index.html'
archive3 = 'https://www.politico.com/story/2019/04/18/mueller-report-pdf-download-text-file-1280891'
 
g.add((muellerReportArchives, RDFS.member, Literal(archive1, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive2, datatype=XSD.anyURI)))
g.add((muellerReportArchives, RDFS.member, Literal(archive3, datatype=XSD.anyURI)))
 
g.add((EX.Mueller_Report, RDF.type, FOAF.Document))
g.add((EX.Mueller_Report, DC.contributor, EX.Robert_Mueller))
g.add((EX.Mueller_Report, SCHEMA.archivedAt, muellerReportArchives))
 
print(g.serialize(format='turtle'))
</syntaxhighlight>
 
Sequence container (open):
<syntaxhighlight>
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
 
EX = Namespace('http://example.org/')
 
g = Graph()
g.bind('ex', EX)
 
donaldTrumpSpouses = BNode()
g.add((donaldTrumpSpouses, RDF.type, RDF.Seq))
g.add((donaldTrumpSpouses, RDF._1, EX.IvanaTrump))
g.add((donaldTrumpSpouses, RDF._2, EX.MarlaMaples))
g.add((donaldTrumpSpouses, RDF._3, EX.MelaniaTrump))
 
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
 
print(g.serialize(format='turtle'))
</syntaxhighlight>
 
Collection (closed list):
<syntaxhighlight>
from rdflib import Graph, Namespace, Literal, BNode, RDF, RDFS, DC, FOAF, XSD
 
EX = Namespace('http://example.org/')
 
g = Graph()
g.bind('ex', EX)
 
from rdflib.collection import Collection
 
g = Graph()
g.bind('ex', EX)
 
donaldTrumpSpouses = BNode()
Collection(g, donaldTrumpSpouses, [
    EX.IvanaTrump, EX.MarlaMaples, EX.MelaniaTrump
])
g.add((EX.Donald_Trump, SCHEMA.spouse, donaldTrumpSpouses))
 
print(g.serialize(format='turtle'))
g.serialize(destination='s02_Donald_Trump_spouses_list.ttl', format='turtle')
 
print(g.serialize(format='turtle'))
</syntaxhighlight>
 
=Example lab solutions=
 
==Getting started (Lab 1)==
 
<syntaxhighlight>
 
from rdflib import Graph, Namespace
 
g = Graph()
 
ex = Namespace('http://example.org/')
 
g.bind("ex", ex)
 
#The Mueller Investigation was lead by Robert Mueller.
g.add((ex.Mueller_Investigation, ex.leadBy, ex.Robert_Muller))
 
#It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, and Roger Stone.
g.add((ex.Mueller_Investigation, ex.involved, ex.Paul_Manafort))
g.add((ex.Mueller_Investigation, ex.involved, ex.Rick_Gates))
g.add((ex.Mueller_Investigation, ex.involved, ex.George_Papadopoulos))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Flynn))
g.add((ex.Mueller_Investigation, ex.involved, ex.Michael_Cohen))
g.add((ex.Mueller_Investigation, ex.involved, ex.Roger_Stone))
 
# --- Paul Manafort ---
#Paul Manafort was business partner of Rick Gates.
g.add((ex.Paul_Manafort, ex.businessManager, ex.Rick_Gates))
# He was campaign chairman for Trump
g.add((ex.Paul_Manafort, ex.campaignChairman, ex.Donald_Trump))


# He was charged with money laundering, tax evasion, and foreign lobbying.
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.Paul_Manafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Paul_Manafort, ex.chargedWith, ex.ForeignLobbying))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))


# He was convicted for bank and tax fraud.
# He was convicted for bank and tax fraud.
g.add((ex.Paul_Manafort, ex.convictedFor, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.Paul_Manafort, ex.convictedFor, ex.TaxFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))


# He pleaded guilty to conspiracy.
# He pleaded guilty to conspiracy.
g.add((ex.Paul_Manafort, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))
 
# He was sentenced to prison.
# He was sentenced to prison.
g.add((ex.Paul_Manafort, ex.sentencedTo, ex.Prison))
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))
 
# He negotiated a plea agreement.
# He negotiated a plea agreement.
g.add((ex.Paul_Manafort, ex.negoiated, ex.PleaBargain))
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))


# --- Rick Gates ---
# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
#Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))
g.add((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))


#He pleaded guilty to conspiracy and lying to FBI.
# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))


#Use the serialize method to write out the model in different formats on screen
# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
print(g.serialize(format="ttl"))
print(g.serialize(format="ttl")) # To screen
# g.serialize("lab1.ttl", format="ttl") #or to file
#g.serialize("lab1.ttl", format="ttl") # To file


#Loop through the triples in the model to print out all triples that have pleading guilty as predicate
# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo : ]:
for subject, object in g[ : ex.pleadGuiltyTo :]:
     print(subject, ex.pleadGuiltyTo, object)
     print(subject, ex.pleadGuiltyTo, object)
# --- IF you have more time tasks ---


# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week  
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week  
Line 211: Line 71:
import shutil
import shutil


def graphToImage(graph):
def graphToImage(graphInput):
     data = {"rdf":graph, "from":"ttl", "to":"png"}
     data = {"rdf":graphInput, "from":"ttl", "to":"png"}
     link = "http://www.ldf.fi/service/rdf-grapher"
     link = "http://www.ldf.fi/service/rdf-grapher"
     response = requests.get(link, params = data, stream=True)
     response = requests.get(link, params = data, stream=True)
     # print(response.content)
     # print(response.content)
     print(response.raw)
     print(response.raw)
     with open("lab1.png", "wb") as fil:
     with open("lab1.png", "wb") as file:
         shutil.copyfileobj(response.raw, fil)
         shutil.copyfileobj(response.raw, file)


graph = g.serialize(format="ttl")
graph = g.serialize(format="ttl")
graphToImage(graph)
graphToImage(graph)
</syntaxhighlight>
</syntaxhighlight>


==RDF programming with RDFlib (Lab 2)==
=2 [[/info216.wiki.uib.no/Lab: SPARQL|Lab: SPARQL queries]] =
<syntaxhighlight>
List all triples in your graph.
 
select * where {
?s ?p ?o .
}


<syntaxhighlight>
List the first 100 triples in your graph.
 
select * where {
?s ?p ?o .
} limit 100


from rdflib import Graph, URIRef, Namespace, Literal, XSD, BNode
Count the number of triples in your graph.
from rdflib.collection import Collection


g = Graph()
select (count(?s)as ?tripleCount) where {
g.parse("lab1.ttl", format="ttl") #Retrives the triples from lab 1
?s ?p ?o .
}


ex = Namespace('http://example.org/')
Count the number of indictments in your graph.


# --- Michael Cohen ---
PREFIX muellerkg: <http://example.org#>
#Michael Cohen was Donald Trump's attorney.
select (Count(?s)as ?numIndictment) where {
g.add((ex.Michael_Cohen, ex.attorneyTo, ex.Donald_Trump))
?s ?p muellerkg:Indictment .
#He pleaded guilty to lying to the FBI.
}
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))


# --- Michael Flynn ---
List everyone who pleaded guilty, along with the name of the investigation.
#Michael Flynn was adviser to Trump.
g.add((ex.Michael_Flynn, ex.adviserTo, ex.Donald_Trump))
#He pleaded guilty to lying to the FBI.
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
# He negotiated a plea agreement.
g.add((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))


#How can you modify your knowledge graph to account for the different lying?
PREFIX m: <http://example.org#>
#Remove these to not have duplicates
select ?name ?s where {
g.remove((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
?s ?p m:guilty-plea;
g.remove((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))
    m:name ?name.
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.remove((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))


# --- Michael Flynn ---
List everyone who were convicted, but who had their conviction overturned by which president.
FlynnLying = BNode()
g.add((FlynnLying, ex.crime, ex.LyingToFBI))
g.add((FlynnLying, ex.pleadGulityOn, Literal("2017-12-1", datatype=XSD.date)))
g.add((FlynnLying, ex.liedAbout, Literal("His communications with a former Russian ambassador during the presidential transition", datatype=XSD.string)))
g.add((FlynnLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, FlynnLying))


# --- Rick Gates ---
PREFIX muellerkg: <http://example.org#>
GatesLying = BNode()
#List everyone who were convicted, but who had their conviction overturned by which president.
Crimes = BNode()
Charged = BNode()
Collection(g, Crimes, [ex.LyingToFBI, ex.Conspiracy])
Collection(g, Charged, [ex.ForeignLobbying, ex.MoneyLaundering, ex.TaxEvasion])
g.add((GatesLying, ex.crime, Crimes))
g.add((GatesLying, ex.chargedWith, Charged))
g.add((GatesLying, ex.pleadGulityOn, Literal("2018-02-23", datatype=XSD.date)))
g.add((GatesLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, GatesLying))


# --- Michael Cohen ---
select ?name ?president  where {
CohenLying = BNode()
?s ?p muellerkg:conviction;
g.add((CohenLying, ex.crime, ex.LyingToCongress))
muellerkg:name ?name;
g.add((CohenLying, ex.liedAbout, ex.TrumpRealEstateDeal))
    muellerkg:overturned true;
g.add((CohenLying, ex.prosecutorsAlleged, Literal("In an August 2017 letter Cohen sent to congressional committees investigating Russian election interference, he falsely stated that the project ended in January 2016", datatype=XSD.string)))
    muellerkg:president ?president.
g.add((CohenLying, ex.mullerInvestigationAlleged, Literal("Cohen falsely stated that he had never agreed to travel to Russia for the real estate deal and that he did not recall any contact with the Russian government about the project", datatype=XSD.string)))
} limit 100
g.add((CohenLying, ex.pleadGulityOn, Literal("2018-11-29", datatype=XSD.date)))
g.add((CohenLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, CohenLying))


print(g.serialize(format="ttl"))
For each investigation, list the number of indictments made.


#Save (serialize) your graph to a Turtle file.
PREFIX muellerkg: <http://example.org#>
# g.serialize("lab2.ttl", format="ttl")
select ?investigation (count(?investigation) as ?numIndictments) where {
?s muellerkg:investigation ?investigation .
} group by (?investigation)


#Add a few triples to the Turtle file with more information about Donald Trump.
For each investigation with multiple indictments, list the number of indictments made.
'''
ex:Donald_Trump ex:address [ ex:city ex:Palm_Beach ;
            ex:country ex:United_States ;
            ex:postalCode 33480 ;
            ex:residence ex:Mar_a_Lago ;
            ex:state ex:Florida ;
            ex:streetName "1100 S Ocean Blvd"^^xsd:string ] ;
    ex:previousAddress [ ex:city ex:Washington_DC ;
            ex:country ex:United_States ;
            ex:phoneNumber "1 202 456 1414"^^xsd:integer ;
            ex:postalCode "20500"^^xsd:integer ;
            ex:residence ex:The_White_House ;
            ex:streetName "1600 Pennsylvania Ave."^^xsd:string ];
    ex:marriedTo ex:Melania_Trump;
    ex:fatherTo (ex:Ivanka_Trump ex:Donald_Trump_Jr ex: ex:Tiffany_Trump ex:Eric_Trump ex:Barron_Trump).
'''


#Read (parse) the Turtle file back into a Python program, and check that the new triples are there
PREFIX muellerkg: <http://example.org#>
def serialize_Graph():
select ?investigation (count(?investigation) as ?numIndictments) where {
    newGraph = Graph()
?s muellerkg:investigation ?investigation.
    newGraph.parse("lab2.ttl")
} group by (?investigation)
    print(newGraph.serialize())
having (?numIndictments > 1)


# serialize_Graph() #Don't need this to run until after adding the triples above to the ttl file
For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first.


#Write a method (function) that starts with Donald Trump prints out a graph depth-first to show how the other graph nodes are connected to him
PREFIX muellerkg: <http://example.org#>
visited_nodes = set()
select ?investigation (count(?investigation) as ?numIndictments) where {
?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)
order by desc(?numIndictments)


def create_Tree(model, nodes):
For each president, list the numbers of convictions and of pardons made after conviction.
    #Traverse the model breadth-first to create the tree.
    global visited_nodes
    tree = Graph()
    children = set()
    visited_nodes |= set(nodes)
    for s, p, o in model:
        if s in nodes and o not in visited_nodes:
            tree.add((s, p, o))
            visited_nodes.add(o)
            children.add(o)
        if o in nodes and s not in visited_nodes:
            invp = URIRef(f'{p}_inv') #_inv represents inverse of
            tree.add((o, invp, s))
            visited_nodes.add(s)
            children.add(s)
    if len(children) > 0:
        children_tree = create_Tree(model, children)
        for triple in children_tree:
            tree.add(triple)
    return tree


def print_Tree(tree, root, indent=0):
PREFIX muellerkg: <http://example.org#>
    #Print the tree depth-first.
SELECT ?president (COUNT(?conviction) AS ?numConvictions) (COUNT(?pardon) AS ?numPardoned)  
    print(str(root))
WHERE {
     for s, p, o in tree:
     ?indictment muellerkg:president ?president ;
        if s==root:
                muellerkg:outcome muellerkg:conviction .
            print('    '*indent + '  ' + str(p), end=' ')
    BIND(?indictment AS ?conviction)
            print_Tree(tree, o, indent+1)
    OPTIONAL {
      
        ?indictment muellerkg:pardoned true .
tree = create_Tree(g, [ex.Donald_Trump])
        BIND(?indictment AS ?pardon)
print_Tree(tree, ex.Donald_Trump)
     }
}
GROUP BY ?president


</syntaxhighlight>
</syntaxhighlight>


==SPARQL Programming (Lab 4)==
== 3 [[/info216.wiki.uib.no/Lab: SPARQL Programming|Lab: SPARQL programming]] ==
'''NOTE: These tasks were performed on the old dataset, with the new dataset, some of these answers would be different.'''
<syntaxhighlight>
<syntaxhighlight>


Line 418: Line 230:


# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.
# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.
# This task is a lot trickier than it needs to be. As far as I'm aware RDFLib has no HAVING support, so a query like this:
task4 = g.query("""
ASK {
  SELECT (COUNT(?s) as ?count) WHERE{
    ?s :pardoned :true;
    :president :Bill_Clinton  .
    }
    HAVING (?count > 5)
}
""", initNs=NS)
print(task4.askAnswer)
# Which works fine in Blazegraph and is a valid SPARQL query will always provide false in RDFLib, cause it uses HAVING. Instead you have to use a nested SELECT query like below, where you use FILTER instead of HAVING. Donald Trump has no pardons, so I have instead chosen Bill Clinton (which has 13 pardons) to check if the query works.


task4 = g.query("""
task4 = g.query("""
Line 448: Line 245:
print(task4.askAnswer)
print(task4.askAnswer)


# Use a DESCRIBE query to create a new graph with information about Donald Trump. Print out the graph in Turtle format.
# By all accounts, it seems DESCRIBE queries are yet to be implemented in RDFLib, but they are attempting to implement it: https://github.com/RDFLib/rdflib/pull/2221 (Issue and proposed solution raised) & https://github.com/RDFLib/rdflib/commit/2325b4a81724c1ccee3a131067db4fbf9b4e2629 (Solution committed to RDFLib). This solution does not work. However, this proposed solution should work if DESCRIBE is implemented in RDFLib


# task5 = g.query("""  
# task5 = g.query("""  
Line 460: Line 254:
# ----- SPARQLWrapper -----
# ----- SPARQLWrapper -----


namespace = "kb" #Default namespace
SERVER = 'http://localhost:7200' #Might need to replace this
sparql = SPARQLWrapper("http://localhost:9999/blazegraph/namespace/"+ namespace + "/sparql") #Replace localhost:9999 with your URL
REPOSITORY = 'Labs' #Replace with your repository name
 
# The current dates are URIs, we would want to change them to Literals with datatype "date" for task 1 & 2
update_str = """
    PREFIX ns1: <http://example.org#>
 
    DELETE {
        ?s ns1:cp_date ?cp;
            ns1:investigation_end ?end;
            ns1:investigation_start ?start.
    }
    INSERT{
        ?s ns1:cp_date ?cpDate;
            ns1:investigation_end ?endDate;
            ns1:investigation_start ?startDate.
    }
    WHERE{
        ?s ns1:cp_date ?cp . #Date conviction was recieved
        BIND (replace(str(?cp), str(ns1:), "")  AS ?cpRemoved)
        BIND (STRDT(STR(?cpRemoved), xsd:date) AS ?cpDate)
       
        ?s ns1:investigation_end ?end . #Investigation End
        BIND (replace(str(?end), str(ns1:), "")  AS ?endRemoved)
        BIND (STRDT(STR(?endRemoved), xsd:date) AS ?endDate)
       
        ?s ns1:investigation_start ?start . #Investigation Start
        BIND (replace(str(?start), str(ns1:), "")  AS ?startRemoved)
        BIND (STRDT(STR(?startRemoved), xsd:date) AS ?startDate)
}"""


sparql.setQuery(update_str)
# Query Endpoint
sparql.setMethod(POST)
sparql = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}')  
sparql.query()
# Update Endpoint
sparqlUpdate = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}/statements')


# Ask whether there was an ongoing indictment on the date 1990-01-01.
# Ask whether there was an ongoing indictment on the date 1990-01-01.
Line 540: Line 307:
results = sparql.query().convert()
results = sparql.query().convert()


print(results.serialize())
print(results)


# Print out a list of all the types used in your graph.
# Print out a list of all the types used in your graph.
Line 575: Line 342:
}"""
}"""


sparql.setQuery(update_str)
sparqlUpdate.setQuery(update_str)
sparql.setMethod(POST)
sparqlUpdate.setMethod(POST)
sparql.query()
sparqlUpdate.query()


#To Test
#To Test
Line 602: Line 369:
     }
     }
     WHERE{
     WHERE{
         ?s ns1:person ?person .
         ?s ns1:name ?person .
}"""
}"""


sparql.setQuery(update_str)
sparqlUpdate.setQuery(update_str)
sparql.setMethod(POST)
sparqlUpdate.setMethod(POST)
sparql.query()
sparqlUpdate.query()


#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson
#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson
Line 625: Line 392:
}"""
}"""


sparql.setQuery(update_str)
sparqlUpdate.setQuery(update_str)
sparql.setMethod(POST)
sparqlUpdate.setMethod(POST)
sparql.query()
sparqlUpdate.query()


#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"
#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"
Line 638: Line 405:
     SELECT ?name
     SELECT ?name
     WHERE{
     WHERE{
     ?s  ns1:person ?name;
     ?s  ns1:name ?name;
        ns1:outcome ns1:indictment.
            ns1:outcome ns1:indictment.
     }
     }
     ORDER BY ?name
     ORDER BY ?name
Line 655: Line 422:


# Print out the minimum, average and maximum indictment days for all the indictments in the graph.
# Print out the minimum, average and maximum indictment days for all the indictments in the graph.
sparql.setQuery("""
sparql.setQuery("""
     prefix xsd: <http://www.w3.org/2001/XMLSchema#>
     prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Line 677: Line 445:


# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.
# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.
sparql.setQuery("""
sparql.setQuery("""
     prefix xsd: <http://www.w3.org/2001/XMLSchema#>
     prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Line 698: Line 467:
     print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')
     print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')


</syntaxhighlight>
== Lab 4 JSON-LD==
Part 1<syntaxhighlight lang="json-ld">
{
  "@context": {
      "@base": "http://example.org/",
      "edges": "http://example.org/triple",
      "start": "http://example.org/source",
      "rel": "http://exaxmple.org/predicate",
      "end": "http://example.org/object",
      "Person" : "http://example.org/Person",
      "birthday" : {
          "@id" : "http://example.org/birthday",
          "@type" : "xsd:date"
      },
      "nameEng" : {
          "@id" : "http://example.org/en/name",
          "@language" : "en"
      },
      "nameFr" : {
          "@id" : "http://example.org/fr/name",
          "@language" : "fr"
      },
      "nameCh" : {
          "@id" : "http://example.org/ch/name",
          "@language" : "ch"
      },
      "age" : {
          "@id" : "http://example.org/age",
          "@type" : "xsd:int"
      },
      "likes" : "http://example.org/games/likes",
      "haircolor" : "http://example.org/games/haircolor"
  },
  "@graph": [
      {
          "@id": "people/Jeremy",
          "@type": "Person",
          "birthday" : "1987.1.1",
          "nameEng" : "Jeremy",
          "age" : 26
      },
      {
          "@id": "people/Tom",
          "@type": "Person"
      },
      {
          "@id": "people/Ju",
          "@type": "Person",
          "birthday" : "2001.1.1",
          "nameCh" : "Ju",
          "age" : 22,
          "likes" : "bastketball"
      },
      {
          "@id": "people/Louis",
          "@type": "Person",
          "birthday" : "1978.1.1",
          "haircolor" : "Black",
          "nameFr" : "Louis",
          "age" : 45
      },
      {"edges" : [
      {
          "start" : "people/Jeremy",
          "rel" : "knows",
          "end" : "people/Tom"
      },
      {
          "start" : "people/Tom",
          "rel" : "knows",
          "end" : "people/Louis"
      },
      {
          "start" : "people/Louis",
          "rel" : "teaches",
          "end" : "people/Ju"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Jeremy"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Tom"
      }
      ]}
  ]
}
</syntaxhighlight>Part 2-3<syntaxhighlight lang="python">
import rdflib
CN_BASE = 'http://api.conceptnet.io/c/en/'
g = rdflib.Graph()
g.parse(CN_BASE+'indictment', format='json-ld')
# To download JSON object:
import json
import requests
json_obj = requests.get(CN_BASE+'indictment').json()
# To change the @context:
context = {
    "@base": "http://ex.org/",
    "edges": "http://ex.org/triple/",
    "start": "http://ex.org/s/",
    "rel": "http://ex.org/p/",
    "end": "http://ex.org/o/",
    "label": "http://ex.org/label"
}
json_obj['@context'] = context
json_str = json.dumps(json_obj)
g = rdflib.Graph()
g.parse(data=json_str, format='json-ld')
# To extract triples (here with labels):
r = g.query("""
        SELECT ?s ?sLabel ?p ?o ?oLabel WHERE {
            ?edge
                <http://ex.org/s/> ?s ;
                <http://ex.org/p/> ?p ;
                <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})
print(r.serialize(format='txt').decode())
# Construct a new graph:
r = g.query("""
        CONSTRUCT {
            ?s ?p ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
        } WHERE {
            ?edge <http://ex.org/s/> ?s ;
                  <http://ex.org/p/> ?p ;
                  <http://ex.org/o/> ?o .
            ?s <http://ex.org/label> ?sLabel .
            ?o <http://ex.org/label> ?oLabel .
}
        """, initNs={'cn': CN_BASE})
print(r.graph.serialize(format='ttl'))
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 09:55, 10 March 2025

Here we will present suggested solutions after each lab. The page will be updated as the course progresses

1 Lab: Getting started with VSCode, Python and RDFlib

from rdflib import Graph, Namespace

ex = Namespace('http://example.org/')

g = Graph()

g.bind("ex", ex)

# The Mueller Investigation was lead by Robert Mueller
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))

# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))

# Paul Manafort was business partner of Rick Gates
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))

# He was campaign chairman for Donald Trump
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))

# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))

# He was convicted for bank and tax fraud.
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))

# He pleaded guilty to conspiracy.
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))

# He was sentenced to prison.
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))

# He negotiated a plea agreement.
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))

# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))

# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))

# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
print(g.serialize(format="ttl")) # To screen
#g.serialize("lab1.ttl", format="ttl") # To file

# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo :]:
    print(subject, ex.pleadGuiltyTo, object)

# --- IF you have more time tasks ---

# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week 

#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil

def graphToImage(graphInput):
    data = {"rdf":graphInput, "from":"ttl", "to":"png"}
    link = "http://www.ldf.fi/service/rdf-grapher"
    response = requests.get(link, params = data, stream=True)
    # print(response.content)
    print(response.raw)
    with open("lab1.png", "wb") as file:
        shutil.copyfileobj(response.raw, file)

graph = g.serialize(format="ttl")
graphToImage(graph)

2 Lab: SPARQL queries

List all triples in your graph.

select * where { 
	?s ?p ?o .
} 

List the first 100 triples in your graph.

select * where { 
	?s ?p ?o .
} limit 100 

Count the number of triples in your graph.

select (count(?s)as ?tripleCount) where { 
	?s ?p ?o .
} 

Count the number of indictments in your graph.

PREFIX muellerkg: <http://example.org#>
select (Count(?s)as ?numIndictment) where { 
	?s ?p muellerkg:Indictment .
} 

List everyone who pleaded guilty, along with the name of the investigation.

PREFIX m: <http://example.org#>
select ?name ?s where { 
	?s ?p m:guilty-plea;
    	m:name ?name.
}  

List everyone who were convicted, but who had their conviction overturned by which president.

PREFIX muellerkg: <http://example.org#>
#List everyone who were convicted, but who had their conviction overturned by which president.

select ?name ?president   where { 
	?s ?p muellerkg:conviction;
		muellerkg:name ?name;
    	muellerkg:overturned true;
     	muellerkg:president ?president.  	
} limit 100 

For each investigation, list the number of indictments made.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation .
} group by (?investigation)

For each investigation with multiple indictments, list the number of indictments made.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)

For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first.

PREFIX muellerkg: <http://example.org#>
select ?investigation (count(?investigation) as ?numIndictments) where { 
	?s muellerkg:investigation ?investigation.
} group by (?investigation)
having (?numIndictments > 1)
order by desc(?numIndictments)

For each president, list the numbers of convictions and of pardons made after conviction.

PREFIX muellerkg: <http://example.org#>
SELECT ?president (COUNT(?conviction) AS ?numConvictions) (COUNT(?pardon) AS ?numPardoned) 
WHERE { 
    ?indictment muellerkg:president ?president ;
                muellerkg:outcome muellerkg:conviction .
    BIND(?indictment AS ?conviction)
    OPTIONAL {
        ?indictment muellerkg:pardoned true .
        BIND(?indictment AS ?pardon)
    }
} 
GROUP BY ?president

3 Lab: SPARQL programming

from rdflib import Graph, Namespace, RDF, FOAF
from SPARQLWrapper import SPARQLWrapper, JSON, POST, GET, TURTLE

g = Graph()
g.parse("Russia_investigation_kg.ttl")

# ----- RDFLIB -----
ex = Namespace('http://example.org#')

NS = {
    '': ex,
    'rdf': RDF,
    'foaf': FOAF,
}

# Print out a list of all the predicates used in your graph.
task1 = g.query("""
SELECT DISTINCT ?p WHERE{
    ?s ?p ?o .
}
""", initNs=NS)

print(list(task1))

# Print out a sorted list of all the presidents represented in your graph.
task2 = g.query("""
SELECT DISTINCT ?president WHERE{
    ?s :president ?president .
}
ORDER BY ?president
""", initNs=NS)

print(list(task2))

# Create dictionary (Python dict) with all the represented presidents as keys. For each key, the value is a list of names of people indicted under that president.
task3_dic = {}

task3 = g.query("""
SELECT ?president ?person WHERE{
    ?s :president ?president;
       :name ?person;
       :outcome :indictment.
}
""", initNs=NS)

for president, person in task3:
    if president not in task3_dic:
        task3_dic[president] = [person]
    else:
        task3_dic[president].append(person)

print(task3_dic)

# Use an ASK query to investigate whether Donald Trump has pardoned more than 5 people.

task4 = g.query("""
    ASK{
        SELECT ?count WHERE{{
  	        SELECT (COUNT(?s) as ?count) WHERE{
    	        ?s :pardoned :true;
                   :president :Bill_Clinton  .
                }}
        FILTER (?count > 5) 
        }
    }
""", initNs=NS)

print(task4.askAnswer)


# task5 = g.query(""" 
# DESCRIBE :Donald_Trump
# """, initNs=NS)

# print(task5.serialize())

# ----- SPARQLWrapper -----

SERVER = 'http://localhost:7200' #Might need to replace this
REPOSITORY = 'Labs' #Replace with your repository name

# Query Endpoint
sparql = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}') 
# Update Endpoint
sparqlUpdate = SPARQLWrapper(f'{SERVER}/repositories/{REPOSITORY}/statements')

# Ask whether there was an ongoing indictment on the date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    ASK {
        SELECT ?end ?start
        WHERE{
            ?s ns1:investigation_end ?end;
               ns1:investigation_start ?start;
               ns1:outcome ns1:indictment.
            FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date) 
	    }
    }
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(f"Are there any investigation on the 1990-01-01: {results['boolean']}")

# List ongoing indictments on that date 1990-01-01.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    SELECT ?s
    WHERE{
        ?s ns1:investigation_end ?end;
           ns1:investigation_start ?start;
           ns1:outcome ns1:indictment.
        FILTER(?start <= "1990-01-01"^^xsd:date && ?end >= "1990-01-01"^^xsd:date) 
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

print("The ongoing investigations on the 1990-01-01 are:")
for result in results["results"]["bindings"]:
    print(result["s"]["value"])

# Describe investigation number 100 (muellerkg:investigation_100).
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    DESCRIBE ns1:investigation_100
""")

sparql.setReturnFormat(TURTLE)
results = sparql.query().convert()

print(results)

# Print out a list of all the types used in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    SELECT DISTINCT ?types
    WHERE{
        ?s rdf:type ?types . 
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

rdf_Types = []

for result in results["results"]["bindings"]:
    rdf_Types.append(result["types"]["value"])

print(rdf_Types)

# Update the graph to that every resource that is an object in a muellerkg:investigation triple has the rdf:type muellerkg:Investigation.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    INSERT{
        ?invest rdf:type ns1:Investigation .
    }
    WHERE{
        ?s ns1:investigation ?invest .
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#To Test
sparql.setQuery("""
    prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX ns1: <http://example.org#>

    ASK{
        ns1:watergate rdf:type ns1:Investigation.
    }
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()
print(results['boolean'])

# Update the graph to that every resource that is an object in a muellerkg:person triple has the rdf:type muellerkg:IndictedPerson.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

    INSERT{
        ?person rdf:type ns1:IndictedPerson .
    }
    WHERE{
        ?s ns1:name ?person .
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#To test, run the query in the above task, replacing the ask query with e.g. ns1:Deborah_Gore_Dean rdf:type ns1:IndictedPerson

# Update the graph so all the investigation nodes (such as muellerkg:watergate) become the subject in a dc:title triple with the corresponding string (watergate) as the literal.
update_str = """
    PREFIX ns1: <http://example.org#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    PREFIX dc: <http://purl.org/dc/elements/1.1/>

    INSERT{
        ?invest dc:title ?investString.
    }
    WHERE{
        ?s ns1:investigation ?invest .
        BIND (replace(str(?invest), str(ns1:), "")  AS ?investString)
}"""

sparqlUpdate.setQuery(update_str)
sparqlUpdate.setMethod(POST)
sparqlUpdate.query()

#Same test as above, replace it with e.g. ns1:watergate dc:title "watergate"

# Print out a sorted list of all the indicted persons represented in your graph.
sparql.setQuery("""
    PREFIX ns1: <http://example.org#>
    PREFIX foaf: <http://xmlns.com/foaf/0.1/>

    SELECT ?name
    WHERE{
    ?s  ns1:name ?name;
            ns1:outcome ns1:indictment.
    }
    ORDER BY ?name
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

names = []

for result in results["results"]["bindings"]:
    names.append(result["name"]["value"])

print(names)

# Print out the minimum, average and maximum indictment days for all the indictments in the graph.

sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>

    SELECT (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
        ?s  ns1:indictment_days ?days;
            ns1:outcome ns1:indictment.
    
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
}
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

for result in results["results"]["bindings"]:
    print(f'The longest an investigation lasted was: {result["max"]["value"]}')
    print(f'The shortest an investigation lasted was: {result["min"]["value"]}')
    print(f'The average investigation lasted: {result["avg"]["value"]}')

# Print out the minimum, average and maximum indictment days for all the indictments in the graph per investigation.

sparql.setQuery("""
    prefix xsd: <http://www.w3.org/2001/XMLSchema#>
    PREFIX ns1: <http://example.org#>

    SELECT ?investigation (AVG(?daysRemoved) as ?avg) (MAX(?daysRemoved) as ?max) (MIN(?daysRemoved) as ?min)  WHERE{
    ?s  ns1:indictment_days ?days;
        ns1:outcome ns1:indictment;
        ns1:investigation ?investigation.
    
    BIND (replace(str(?days), str(ns1:), "")  AS ?daysR)
    BIND (STRDT(STR(?daysR), xsd:float) AS ?daysRemoved)
    }
    GROUP BY ?investigation
""")

sparql.setReturnFormat(JSON)
results = sparql.query().convert()

for result in results["results"]["bindings"]:
    print(f'{result["investigation"]["value"]} - min: {result["min"]["value"]}, max: {result["max"]["value"]}, avg: {result["avg"]["value"]}')

Lab 4 JSON-LD

Part 1

{
  "@context": {
      "@base": "http://example.org/",
      "edges": "http://example.org/triple",
      "start": "http://example.org/source",
      "rel": "http://exaxmple.org/predicate",
      "end": "http://example.org/object",
      "Person" : "http://example.org/Person",
      "birthday" : {
          "@id" : "http://example.org/birthday",
          "@type" : "xsd:date"
      },
      "nameEng" : {
          "@id" : "http://example.org/en/name",
          "@language" : "en"
      },
      "nameFr" : {
          "@id" : "http://example.org/fr/name",
          "@language" : "fr"
      },
      "nameCh" : {
          "@id" : "http://example.org/ch/name",
          "@language" : "ch"
      },
      "age" : {
          "@id" : "http://example.org/age",
          "@type" : "xsd:int"
      },
      "likes" : "http://example.org/games/likes",
      "haircolor" : "http://example.org/games/haircolor"
  },
  "@graph": [
      {
          "@id": "people/Jeremy",
          "@type": "Person",
          "birthday" : "1987.1.1",
          "nameEng" : "Jeremy",
          "age" : 26
      },
      {
          "@id": "people/Tom",
          "@type": "Person"
      },
      {
          "@id": "people/Ju",
          "@type": "Person",
          "birthday" : "2001.1.1",
          "nameCh" : "Ju",
          "age" : 22,
          "likes" : "bastketball"
      },
      {
          "@id": "people/Louis",
          "@type": "Person",
          "birthday" : "1978.1.1",
          "haircolor" : "Black",
          "nameFr" : "Louis",
          "age" : 45
      },
      {"edges" : [
      {
          "start" : "people/Jeremy",
          "rel" : "knows",
          "end" : "people/Tom"
      },
      {
          "start" : "people/Tom",
          "rel" : "knows",
          "end" : "people/Louis"
      },
      {
          "start" : "people/Louis",
          "rel" : "teaches",
          "end" : "people/Ju"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Jeremy"
      },
      {
          "start" : "people/Ju",
          "rel" : "plays",
          "end" : "people/Tom"
      }
      ]}
  ]
}

Part 2-3

import rdflib

CN_BASE = 'http://api.conceptnet.io/c/en/'

g = rdflib.Graph()
g.parse(CN_BASE+'indictment', format='json-ld')

# To download JSON object:

import json
import requests

json_obj = requests.get(CN_BASE+'indictment').json()

# To change the @context:

context = {
     "@base": "http://ex.org/",
     "edges": "http://ex.org/triple/",
     "start": "http://ex.org/s/",
     "rel": "http://ex.org/p/",
     "end": "http://ex.org/o/",
     "label": "http://ex.org/label"
}
json_obj['@context'] = context
json_str = json.dumps(json_obj)

g = rdflib.Graph()
g.parse(data=json_str, format='json-ld')

# To extract triples (here with labels):

r = g.query("""
         SELECT ?s ?sLabel ?p ?o ?oLabel WHERE {
             ?edge
                 <http://ex.org/s/> ?s ;
                 <http://ex.org/p/> ?p ;
                 <http://ex.org/o/> ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
}
         """, initNs={'cn': CN_BASE})
print(r.serialize(format='txt').decode())

# Construct a new graph:

r = g.query("""
         CONSTRUCT {
             ?s ?p ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
         } WHERE {
             ?edge <http://ex.org/s/> ?s ;
                   <http://ex.org/p/> ?p ;
                   <http://ex.org/o/> ?o .
             ?s <http://ex.org/label> ?sLabel .
             ?o <http://ex.org/label> ?oLabel .
}
         """, initNs={'cn': CN_BASE})

print(r.graph.serialize(format='ttl'))