Lab Solutions: Difference between revisions
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
===Lab 1/2 - Different ways of Making an Address === | |||
<syntaxhighlight> | |||
from rdflib import Graph, Namespace, URIRef, BNode, Literal | |||
from rdflib.namespace import RDF, FOAF, XSD | |||
g = Graph() | |||
ex = Namespace("http://example.org/") | |||
# How to represent the address of Cade Tracey. From worst solution to best. | |||
# Solution 1 - Make the entire address into one Literal | |||
g.add((ex.Cade_Tracey, ex.livesIn, Literal("1516_Henry_Street, Berkeley, California 94709, USA"))) | |||
# Solution 2 - Seperate the different pieces information into their own triples | |||
g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street"))) | |||
g.add((ex.Cade_tracey, ex.city, Literal("Berkeley"))) | |||
g.add((ex.Cade_tracey, ex.state, Literal("California"))) | |||
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709"))) | |||
g.add((ex.Cade_tracey, ex.country, Literal("USA"))) | |||
# Solution 3 - Some parts of the addresses makes more sense to be resources than Literals. | |||
g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street"))) | |||
g.add((ex.Cade_tracey, ex.city, ex.Berkeley)) | |||
g.add((ex.Cade_tracey, ex.state, ex.California)) | |||
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709"))) | |||
g.add((ex.Cade_tracey, ex.country, ex.USA)) | |||
# Solution 4 - Grouping of the information into an Address. We can Represent the address concept with its own URI OR with a Blank Node. | |||
# One advantage of this is that we can easily remove the entire address, instead of removing each individual part of the address. | |||
# Address URI - CadeAdress | |||
g.add((ex.Cade_Tracey, ex.address, ex.CadeAddress)) | |||
g.add((ex.CadeAddress, RDF.type, ex.Address)) | |||
g.add((ex.CadeAddress, ex.street, Literal("1516 Henry Street"))) | |||
g.add((ex.CadeAddress, ex.city, ex.Berkeley)) | |||
g.add((ex.CadeAddress, ex.state, ex.California)) | |||
g.add((ex.CadeAddress, ex.postalCode, Literal("94709"))) | |||
g.add((ex.CadeAddress, ex.country, ex.USA)) | |||
# OR | |||
# Blank node for Address. | |||
address = BNode() | |||
g.add((ex.Cade_Tracey, ex.address, address)) | |||
g.add((address, RDF.type, ex.Address)) | |||
g.add((address, ex.street, Literal("1516 Henry Street", datatype=XSD.string))) | |||
g.add((address, ex.city, ex.Berkeley)) | |||
g.add((address, ex.state, ex.California)) | |||
g.add((address, ex.postalCode, Literal("94709", datatype=XSD.string))) | |||
g.add((address, ex.country, ex.USA)) | |||
# Solution 5 using existing vocabularies for address | |||
# (in this case https://schema.org/PostalAddress from schema.org). | |||
# Also using existing ontology for places like California. (like http://dbpedia.org/resource/California from dbpedia.org) | |||
schema = "https://schema.org/" | |||
dbp = "https://dpbedia.org/resource/" | |||
g.add((ex.Cade_Tracey, schema.address, ex.CadeAddress)) | |||
g.add((ex.CadeAddress, RDF.type, schema.PostalAddress)) | |||
g.add((ex.CadeAddress, schema.streetAddress, Literal("1516 Henry Street"))) | |||
g.add((ex.CadeAddress, schema.addresCity, dbp.Berkeley)) | |||
g.add((ex.CadeAddress, schema.addressRegion, dbp.California)) | |||
g.add((ex.CadeAddress, schema.postalCode, Literal("94709"))) | |||
g.add((ex.CadeAddress, schema.addressCountry, dbp.United_States)) | |||
</syntaxhighlight> | |||
Revision as of 11:10, 24 January 2020
This page will be updated with Python examples related to the lectures and labs. We will add more examples after each lab has ended. The first examples will use Python's RDFlib. We will introduce other relevant libraries later.
Lecture 1: Python, RDFlib, and PyCharm
Coding Tasks Lab 1
from rdflib import Graph, Namespace, URIRef, BNode, Literal
from rdflib.namespace import RDF, FOAF, XSD
g = Graph()
ex = Namespace("http://example.org/")
g.add((ex.Cade, ex.married, ex.Mary))
g.add((ex.France, ex.capital, ex.Paris))
g.add((ex.Cade, ex.age, Literal("27", datatype=XSD.integer)))
g.add((ex.Mary, ex.age, Literal("26", datatype=XSD.integer)))
g.add((ex.Mary, ex.interest, ex.Hiking))
g.add((ex.Mary, ex.interest, ex.Chocolate))
g.add((ex.Mary, ex.interest, ex.Biology))
g.add((ex.Mary, RDF.type, ex.Student))
g.add((ex.Paris, RDF.type, ex.City))
g.add((ex.Paris, ex.locatedIn, ex.France))
g.add((ex.Cade, ex.characteristic, ex.Kind))
g.add((ex.Mary, ex.characteristic, ex.Kind))
g.add((ex.Mary, RDF.type, FOAF.Person))
g.add((ex.Cade, RDF.type, FOAF.Person))
Lab 1/2 - Different ways of Making an Address
from rdflib import Graph, Namespace, URIRef, BNode, Literal
from rdflib.namespace import RDF, FOAF, XSD
g = Graph()
ex = Namespace("http://example.org/")
# How to represent the address of Cade Tracey. From worst solution to best.
# Solution 1 - Make the entire address into one Literal
g.add((ex.Cade_Tracey, ex.livesIn, Literal("1516_Henry_Street, Berkeley, California 94709, USA")))
# Solution 2 - Seperate the different pieces information into their own triples
g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
g.add((ex.Cade_tracey, ex.city, Literal("Berkeley")))
g.add((ex.Cade_tracey, ex.state, Literal("California")))
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey, ex.country, Literal("USA")))
# Solution 3 - Some parts of the addresses makes more sense to be resources than Literals.
g.add((ex.Cade_tracey, ex.street, Literal("1516_Henry_Street")))
g.add((ex.Cade_tracey, ex.city, ex.Berkeley))
g.add((ex.Cade_tracey, ex.state, ex.California))
g.add((ex.Cade_tracey, ex.zipcode, Literal("94709")))
g.add((ex.Cade_tracey, ex.country, ex.USA))
# Solution 4 - Grouping of the information into an Address. We can Represent the address concept with its own URI OR with a Blank Node.
# One advantage of this is that we can easily remove the entire address, instead of removing each individual part of the address.
# Address URI - CadeAdress
g.add((ex.Cade_Tracey, ex.address, ex.CadeAddress))
g.add((ex.CadeAddress, RDF.type, ex.Address))
g.add((ex.CadeAddress, ex.street, Literal("1516 Henry Street")))
g.add((ex.CadeAddress, ex.city, ex.Berkeley))
g.add((ex.CadeAddress, ex.state, ex.California))
g.add((ex.CadeAddress, ex.postalCode, Literal("94709")))
g.add((ex.CadeAddress, ex.country, ex.USA))
# OR
# Blank node for Address.
address = BNode()
g.add((ex.Cade_Tracey, ex.address, address))
g.add((address, RDF.type, ex.Address))
g.add((address, ex.street, Literal("1516 Henry Street", datatype=XSD.string)))
g.add((address, ex.city, ex.Berkeley))
g.add((address, ex.state, ex.California))
g.add((address, ex.postalCode, Literal("94709", datatype=XSD.string)))
g.add((address, ex.country, ex.USA))
# Solution 5 using existing vocabularies for address
# (in this case https://schema.org/PostalAddress from schema.org).
# Also using existing ontology for places like California. (like http://dbpedia.org/resource/California from dbpedia.org)
schema = "https://schema.org/"
dbp = "https://dpbedia.org/resource/"
g.add((ex.Cade_Tracey, schema.address, ex.CadeAddress))
g.add((ex.CadeAddress, RDF.type, schema.PostalAddress))
g.add((ex.CadeAddress, schema.streetAddress, Literal("1516 Henry Street")))
g.add((ex.CadeAddress, schema.addresCity, dbp.Berkeley))
g.add((ex.CadeAddress, schema.addressRegion, dbp.California))
g.add((ex.CadeAddress, schema.postalCode, Literal("94709")))
g.add((ex.CadeAddress, schema.addressCountry, dbp.United_States))
Lab 2 - Collection Example
from rdflib import Graph, Namespace
from rdflib.collection import Collection
# Sometimes we want to add many objects or subjects for the same predicate at once.
# In these cases we can use Collection() to save some time.
# In this case I want to add all countries that Emma has visited at once.
b = BNode()
g.add((ex.Emma, ex.visit, b))
Collection(g, b,
[ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])
# OR
g.add((ex.Emma, ex.visit, ex.EmmaVisits))
Collection(g, ex.EmmaVisits,
[ex.Portugal, ex.Italy, ex.France, ex.Germany, ex.Denmark, ex.Sweden])
INFO216, UiB, 2017-2020. All code examples are CC0.