SPARQL Examples
This page will be updated with SPARQL examples as the course progresses.
SPARQL Examples from Session 3: SPARQL
Prefixes used
The examples below will assume that these are in place (some examples aren't yet visible).
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX dc: <http://purl.org/dc/terms/> PREFIX bibo: <http://purl.org/ontology/bibo/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX skos: <http://www.w3.org/2004/02/skos/core#> PREFIX ss: <http://semanticscholar.org/> PREFIX kg: <http://i2s.uib.no/kg4news/> PREFIX sp: <http://i2s.uib.no/kg4news/science-parse/> PREFIX th: <http://i2s.uib.no/kg4news/theme/> PREFIX xml: <http://www.w3.org/XML/1998/namespace> PREFIX ex: <http://example.org/>
Select all triplets in graph
SELECT ?s ?p ?o WHERE { ?s ?p ?o . }
or
SELECT * WHERE { ?s ?p ?o . }
Select the interestes of Cade
SELECT ?cadeInterest WHERE { ex:Cade ex:interest ?cadeInterest . }
Select the country and city where Emma lives
SELECT ?emmaCity ?emmaCountry WHERE { ex:Emma ex:address ?address . ?address ex:city ?emmaCity . ?address ex:country ?emmaCountry . }
All address info to Emma.
SELECT ?person ?city ?country ?postalcode ?street WHERE{ ex:Emma ex:address ?address. ?person ex:address ?address. ?address ex:city ?city. ?address ex:country ?country. ?address ex:postalCode ?postalcode. ?address ex:street ?street. }
Selecting all address info, to everyone.
SELECT ?name ?city ?country ?postalcode ?street WHERE{ ?person foaf:name ?name.
?person ex:address ?address.
?address ex:city ?city. ?address ex:country ?country. ?address ex:postalCode ?postalcode. ?address ex:street ?street. }
Select the people who are over 26 years old
SELECT ?person ?age WHERE { ?person ex:age ?age . FILTER(?age > 26) . }
Select people who graduated with Bachelor
SELECT ?person ?degree WHERE { ?person ex:degree ?degree . ?degree ex:degreeLevel "Bachelor" . }
Delete cades photography interest
DELETE DATA { ex:Cade ex:interest ex:Photography . }
Delete and insert university of valencia
DELETE { ?s ?p ex:University_of_Valencia } INSERT { ?s ?p ex:Universidad_de_Valencia } WHERE { ?s ?p ex:University_of_Valencia }
Check if the deletion worked
SELECT ?s ?o2 WHERE { ?s ex:degree ?o . ?o ex:degreeSource ?o2 . }
Insert Sergio
INSERT DATA { ex:Sergio a foaf:Person ; ex:address [ a ex:Address ; ex:city ex:Valenciay ; ex:country ex:Spain ; ex:postalCode "46021"^^xsd:string ; ex:state ex:California ; ex:street "4_Carrer_del_Serpis"^^xsd:string ] ; ex:degree [ ex:degreeField ex:Computer_science ; ex:degreeLevel "Master"^^xsd:string ; ex:degreeSource ex:University_of_Valencia ; ex:year "2008"^^xsd:gYear ] ; ex:expertise ex:Big_data, ex:Semantic_technologies, ex:Machine_learning; foaf:name "Sergio_Pastor"^^xsd:string . }
Describe Sergio
DESCRIBE ex:Sergio ?o WHERE { ex:Sergio ?p ?o . ?o ?p2 ?o2 . }
Construct that any city is in the country in an address
CONSTRUCT {?city ex:locatedIn ?country} Where { ?s rdf:type ex:Address . ?s ex:city ?city . ?s ex:country ?country. }
The data are available in this Blazegraph triple store:
http://sandbox.i2s.uib.no , but you may need to be inside the UiB network (or on VPN.)
SELECT DISTINCT ?p WHERE { ?s rdf:type ss:Paper . ?s ?p ?o . } LIMIT 100
Explain all types and properties
SELECT ?pt ?e WHERE { ?pt rdfs:comment ?e . } LIMIT 100
List main papers
SELECT * WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . }
List properties
SELECT DISTINCT ?p WHERE { ?s ?p ?o . } LIMIT 100
List types
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT DISTINCT ?t WHERE { ?s rdf:type ?t . } LIMIT 100
List authors
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT DISTINCT ?p WHERE { ?s rdf:type foaf:Person . ?s ?p ?o . } LIMIT 100
Add this to show datatypes!
BIND ( DATATYPE(?year) AS ?type )
Add this to only show years with the right type.
FILTER ( DATATYPE(?year) = xsd:gYear )
Group and count main papers by year
SELECT ?year (COUNT(?paper) AS ?count) WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) } GROUP BY ?year
Add this to order the results
ORDER BY ?year
Add this to order and only show years with more than 5 papers.
HAVING (?count > 5) ORDER BY DESC(?count)
Show papers
SELECT ?paper ?year WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) }
Change last lines to show papers without an xsd:gYear too.
OPTIONAL { ?paper dc:date ?year . FILTER ( DATATYPE(?year) = xsd:gYear ) }
Alternative values for variables
SELECT ?p ?n ?year WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor ?a . ?a foaf:name ?n . ?p dc:date ?year . FILTER ( CONTAINS( ?n, ?str ) ) FILTER ( CONTAINS( STR(?year), ?yr) ) VALUES ?str { "Andreas" "David" } VALUES ?yr { "2020" "2019" } }
Property paths (composite properties)
This query:
SELECT ?p ?n WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor ?c . ?c foaf:name ?n . }
Can be simplified by eliminating ?c:
SELECT ?p ?n WHERE { ?p rdf:type kg:MainPaper . ?p dc:contributor / foaf:name ?n . }
Can be further simplified by first reversing rdf:type:
SELECT ?p ?n WHERE { kg:MainPaper ^rdf:type ?p . ?p dc:contributor / foaf:name ?n . }
...and the eliminating ?p:
SELECT ?n WHERE { kg:MainPaper ^rdf:type / dc:contributor / foaf:name ?n . }
Retrieve titles of papers that mention SPARQL
Get papers with topics labelled "SPARQL":
SELECT ?t WHERE { ?t ^dc:title / dc:subject / skos:prefLabel "SPARQL" . }
Some labels also go via a theme:
SELECT ?t WHERE { ?t ^dc:title / dc:subject / th:theme / skos:prefLabel "SPARQL" . }
We can get both using a path with an optional element (the '?'):
SELECT ?t WHERE { ?t ^dc:title / dc:subject / th:theme? / skos:prefLabel "SPARQL" . }
Using an external SPARQL endpoint
We limit to a single label to avoid time-outs and rate limitations:
SELECT ?a ?n ?r WHERE { ?a rdf:type ss:Topic . ?a skos:prefLabel ?n . FILTER ( ?n = "SPARQL" ) BIND ( STRLANG( ?n, "en" ) AS ?n2 ) SERVICE <https://dbpedia.org/sparql> { ?r rdfs:label ?n2 . } } LIMIT 1
Insert 4-digit years for all main papers
Main papers that do not have an xsd:gYear:
SELECT * WHERE { ?p rdf:type kg:MainPaper . ?p dc:date ?d . FILTER ( DATATYPE(?d) = xsd:gYear ) }
Show the datatypes:
SELECT * WHERE { ?p rdf:type kg:MainPaper . ?p dc:date ?d . FILTER ( DATATYPE(?d) = xsd:dateTime ) BIND ( year( ?d ) AS ?dt ) }
Insert 4-digit years:
INSERT { ?paper dc:date ?year } WHERE { ?paper rdf:type kg:MainPaper . ?paper dc:date ?date . FILTER( DATATYPE(?date) != xsd:gYear ) BIND ( YEAR(?date) AS ?year ) }
(Actually, these years are xsd:integer- s, not quite xsd:gYear-s.)