Lab Solutions
Here we will present suggested solutions after each lab. The page will be updated as the course progresses
Getting started (Lab 1)
from rdflib import Graph, Namespace
ex = Namespace('http://example.org/')
g = Graph()
g.bind("ex", ex)
# The Mueller Investigation was lead by Robert Mueller
g.add((ex.MuellerInvestigation, ex.leadBy, ex.RobertMueller))
# It involved Paul Manafort, Rick Gates, George Papadopoulos, Michael Flynn, Michael Cohen, and Roger Stone.
g.add((ex.MuellerInvestigation, ex.involved, ex.PaulManafort))
g.add((ex.MuellerInvestigation, ex.involved, ex.RickGates))
g.add((ex.MuellerInvestigation, ex.involved, ex.GeorgePapadopoulos))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelFlynn))
g.add((ex.MuellerInvestigation, ex.involved, ex.MichaelCohen))
g.add((ex.MuellerInvestigation, ex.involved, ex.RogerStone))
# Paul Manafort was business partner of Rick Gates
g.add((ex.PaulManafort, ex.businessPartner, ex.RickGates))
# He was campaign chairman for Donald Trump
g.add((ex.PaulManafort, ex.campaignChairman, ex.DonaldTrump))
# He was charged with money laundering, tax evasion, and foreign lobbying.
g.add((ex.PaulManafort, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.PaulManafort, ex.chargedWith, ex.TaxEvasion))
g.add((ex.PaulManafort, ex.chargedWith, ex.ForeignLobbying))
# He was convicted for bank and tax fraud.
g.add((ex.PaulManafort, ex.convictedOf, ex.BankFraud))
g.add((ex.PaulManafort, ex.convictedOf, ex.TaxFraud))
# He pleaded guilty to conspiracy.
g.add((ex.PaulManafort, ex.pleadGuiltyTo, ex.Conspiracy))
# He was sentenced to prison.
g.add((ex.PaulManafort, ex.sentencedTo, ex.Prison))
# He negotiated a plea agreement.
g.add((ex.PaulManafort, ex.negotiated, ex.PleaAgreement))
# Rick Gates was charged with money laundering, tax evasion and foreign lobbying.
g.add((ex.RickGates, ex.chargedWith, ex.MoneyLaundering))
g.add((ex.RickGates, ex.chargedWith, ex.TaxEvasion))
g.add((ex.RickGates, ex.chargedWith, ex.ForeignLobbying))
# He pleaded guilty to conspiracy and lying to FBI.
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.Conspiracy))
g.add((ex.RickGates, ex.pleadGuiltyTo, ex.LyingToFBI))
# Use the serialize method of rdflib.Graph to write out the model in different formats (on screen or to file)
print(g.serialize(format="ttl")) # To screen
#g.serialize("lab1.ttl", format="ttl") # To file
# Loop through the triples in the model to print out all triples that have pleading guilty as predicate
for subject, object in g[ : ex.pleadGuiltyTo :]:
print(subject, ex.pleadGuiltyTo, object)
# --- IF you have more time tasks ---
# Michael Cohen, Michael Flynn and the lying is part of lab 2 and therefore the answer is not provided this week
#Write a method (function) that submits your model for rendering and saves the returned image to file.
import requests
import shutil
def graphToImage(graphInput):
data = {"rdf":graphInput, "from":"ttl", "to":"png"}
link = "http://www.ldf.fi/service/rdf-grapher"
response = requests.get(link, params = data, stream=True)
# print(response.content)
print(response.raw)
with open("lab1.png", "wb") as file:
shutil.copyfileobj(response.raw, file)
graph = g.serialize(format="ttl")
graphToImage(graph)
RDF programming with RDFlib (Lab 2)
from rdflib import Graph, Namespace, Literal, BNode, XSD, FOAF, RDF, URIRef
from rdflib.collection import Collection
g = Graph()
# Getting the graph created in the first lab
g.parse("lab1.ttl", format="ttl")
ex = Namespace("http://example.org/")
g.bind("ex", ex)
g.bind("foaf", FOAF)
# --- Michael Cohen ---
# Michael Cohen was Donald Trump's attorney.
g.add((ex.MichaelCohen, ex.attorneyTo, ex.DonaldTrump))
# He pleaded guilty for lying to Congress.
g.add((ex.MichaelCohen, ex.pleadGuiltyTo, ex.LyingToCongress))
# --- Michael Flynn ---
# Michael Flynn was adviser to Donald Trump.
g.add((ex.MichaelFlynn, ex.adviserTo, ex.DonaldTrump))
# He pleaded guilty for lying to the FBI.
g.add((ex.MichaelFlynn, ex.pleadGuiltyTo, ex.LyingToFBI))
# He negotiated a plea agreement.
g.add((ex.MichaelFlynn, ex.negotiated, ex.PleaAgreement))
# Change your graph so it represents instances of lying as blank nodes.
# Remove the triples that will be duplicated
g.remove((ex.Michael_Flynn, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Michael_Flynn, ex.negoiated, ex.PleaBargain))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.LyingToFBI))
g.remove((ex.Rick_Gates, ex.pleadGuiltyTo, ex.Conspiracy))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.ForeignLobbying))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.MoneyLaundering))
g.remove((ex.Rick_Gates, ex.chargedWith, ex.TaxEvasion))
g.remove((ex.Michael_Cohen, ex.pleadGuiltyTo, ex.LyingToCongress))
# --- Michael Flynn ---
FlynnLying = BNode()
g.add((FlynnLying, ex.crime, ex.LyingToFBI))
g.add((FlynnLying, ex.pleadGulityOn, Literal("2017-12-1", datatype=XSD.date)))
g.add((FlynnLying, ex.liedAbout, Literal("His communications with a former Russian ambassador during the presidential transition", datatype=XSD.string)))
g.add((FlynnLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Flynn, ex.pleadGuiltyTo, FlynnLying))
# --- Rick Gates ---
GatesLying = BNode()
Crimes = BNode()
Charged = BNode()
Collection(g, Crimes, [ex.LyingToFBI, ex.Conspiracy])
Collection(g, Charged, [ex.ForeignLobbying, ex.MoneyLaundering, ex.TaxEvasion])
g.add((GatesLying, ex.crime, Crimes))
g.add((GatesLying, ex.chargedWith, Charged))
g.add((GatesLying, ex.pleadGulityOn, Literal("2018-02-23", datatype=XSD.date)))
g.add((GatesLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Rick_Gates, ex.pleadGuiltyTo, GatesLying))
# --- Michael Cohen ---
CohenLying = BNode()
g.add((CohenLying, ex.crime, ex.LyingToCongress))
g.add((CohenLying, ex.liedAbout, ex.TrumpRealEstateDeal))
g.add((CohenLying, ex.prosecutorsAlleged, Literal("In an August 2017 letter Cohen sent to congressional committees investigating Russian election interference, he falsely stated that the project ended in January 2016", datatype=XSD.string)))
g.add((CohenLying, ex.mullerInvestigationAlleged, Literal("Cohen falsely stated that he had never agreed to travel to Russia for the real estate deal and that he did not recall any contact with the Russian government about the project", datatype=XSD.string)))
g.add((CohenLying, ex.pleadGulityOn, Literal("2018-11-29", datatype=XSD.date)))
g.add((CohenLying, ex.pleaBargain, Literal("true", datatype=XSD.boolean)))
g.add((ex.Michael_Cohen, ex.pleadGuiltyTo, CohenLying))
print(g.serialize(format="ttl"))
#Save (serialize) your graph to a Turtle file.
# g.serialize("lab2.ttl", format="ttl")
#Add a few triples to the Turtle file with more information about Donald Trump.
'''
ex:Donald_Trump ex:address [ ex:city ex:Palm_Beach ;
ex:country ex:United_States ;
ex:postalCode 33480 ;
ex:residence ex:Mar_a_Lago ;
ex:state ex:Florida ;
ex:streetName "1100 S Ocean Blvd"^^xsd:string ] ;
ex:previousAddress [ ex:city ex:Washington_DC ;
ex:country ex:United_States ;
ex:phoneNumber "1 202 456 1414"^^xsd:integer ;
ex:postalCode "20500"^^xsd:integer ;
ex:residence ex:The_White_House ;
ex:streetName "1600 Pennsylvania Ave."^^xsd:string ];
ex:marriedTo ex:Melania_Trump;
ex:fatherTo (ex:Ivanka_Trump ex:Donald_Trump_Jr ex: ex:Tiffany_Trump ex:Eric_Trump ex:Barron_Trump).
'''
#Read (parse) the Turtle file back into a Python program, and check that the new triples are there
def serialize_Graph():
newGraph = Graph()
newGraph.parse("lab2.ttl")
print(newGraph.serialize())
#Don't need this to run until after adding the triples above to the ttl file
# serialize_Graph()
#Write a method (function) that starts with Donald Trump prints out a graph depth-first to show how the other graph nodes are connected to him
visited_nodes = set()
def create_Tree(model, nodes):
#Traverse the model breadth-first to create the tree.
global visited_nodes
tree = Graph()
children = set()
visited_nodes |= set(nodes)
for s, p, o in model:
if s in nodes and o not in visited_nodes:
tree.add((s, p, o))
visited_nodes.add(o)
children.add(o)
if o in nodes and s not in visited_nodes:
invp = URIRef(f'{p}_inv') #_inv represents inverse of
tree.add((o, invp, s))
visited_nodes.add(s)
children.add(s)
if len(children) > 0:
children_tree = create_Tree(model, children)
for triple in children_tree:
tree.add(triple)
return tree
def print_Tree(tree, root, indent=0):
#Print the tree depth-first.
print(str(root))
for s, p, o in tree:
if s==root:
print(' '*indent + ' ' + str(p), end=' ')
print_Tree(tree, o, indent+1)
tree = create_Tree(g, [ex.Donald_Trump])
print_Tree(tree, ex.Donald_Trump)
SPARQL (Lab 3)
List all triples
SELECT ?s ?p ?o
WHERE {?s ?p ?o .}
List the first 100 triples
SELECT ?s ?p ?o
WHERE {?s ?p ?o .}
LIMIT 100
Count the number of triples
SELECT (COUNT(*) as ?count)
WHERE {?s ?p ?o .}
Count the number of indictments
PREFIX ns1: <http://example.org#>
SELECT (COUNT(?ind) as ?amount)
WHERE {
?s ns1:outcome ?ind;
ns1:outcome ns1:indictment.
}
===List the names of everyone who pleaded guilty, along with the name of the investigation===
PREFIX ns1: <http://example.org#>
SELECT ?name ?invname
WHERE {
?s ns1:name ?name;
ns1:investigation ?invname;
ns1:outcome ns1:guilty-plea .
}
===List the names of everyone who were convicted, but who had their conviction overturned by which president===
PREFIX ns1: <http://example.org#>
SELECT ?name ?president
WHERE {
?s ns1:name ?name;
ns1:president ?president;
ns1:outcome ns1:conviction;
ns1:overturned ns1:true.
}
For each investigation, list the number of indictments made
PREFIX ns1: <http://example.org#>
SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
?s ns1:investigation ?invs;
ns1:outcome ns1:indictment .
}
GROUP BY ?invs
===For each investigation with multiple indictments, list the number of indictments made===
PREFIX ns1: <http://example.org#>
SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
?s ns1:investigation ?invs;
ns1:outcome ns1:indictment .
}
GROUP BY ?invs
HAVING(?count > 1)
===For each investigation with multiple indictments, list the number of indictments made, sorted with the most indictments first===
PREFIX ns1: <http://example.org#>
SELECT ?invs (COUNT(?invs) as ?count)
WHERE {
?s ns1:investigation ?invs;
ns1:outcome ns1:indictment .
}
GROUP BY ?invs
HAVING(?count > 1)
ORDER BY DESC(?count)
===For each president, list the numbers of convictions and of pardons made===
PREFIX ns1: <http://example.org#>
SELECT ?president (COUNT(?outcome) as ?conviction) (COUNT(?pardon) as
?pardons)
WHERE {
?s ns1:president ?president;
ns1:outcome ?outcome ;
ns1:outcome ns1:conviction.
OPTIONAL{
?s ns1:pardoned ?pardon .
FILTER (?pardon = ns1:true)
}
}
GROUP BY ?president
Rename mullerkg:name to something like muellerkg:person
PREFIX ns1: <http://example.org#>
DELETE{?s ns1:name ?o}
INSERT{?s ns1:person ?o}
WHERE {?s ns1:name ?o}
===Update the graph so all the investigated person and president nodes become the subjects in foaf:name triples with the corresponding strings===
PREFIX ns1: <http://example.org#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
#Persons
INSERT {?person foaf:name ?name}
WHERE {
?investigation ns1:person ?person .
BIND(REPLACE(STR(?person), STR(ns1:), "") AS ?name)
}
#Presidents
INSERT {?president foaf:name ?name}
WHERE {
?investigation ns1:president ?president .
BIND(REPLACE(STR(?president), STR(ns1:), "") AS ?name)
}
Use INSERT DATA updates to add these triples
PREFIX ns1: <http://example.org#>
INSERT DATA {
ns1:George_Papadopoulos ns1:adviserTo ns1:Donald_Trump;
ns1:pleadGuiltyTo ns1:LyingToFBI;
ns1:sentencedTo ns1:Prison.
ns1:Roger_Stone a ns1:Republican;
ns1:adviserTo ns1:Donald_Trump;
ns1:officialTo ns1:Trump_Campaign;
ns1:interactedWith ns1:Wikileaks;
ns1:providedTestimony ns1:House_Intelligence_Committee;
ns1:clearedOf ns1:AllCharges.
}
#To test if added
SELECT ?p ?o
WHERE {ns1:Roger_Stone ?p ?o .}
===Use DELETE DATA and then INSERT DATA updates to correct that Roger Stone was cleared of all charges===
PREFIX ns1: <http://example.org#>
DELETE DATA {
ns1:Roger_Stone ns1:clearedOf ns1:AllCharges .
}
INSERT DATA {
ns1:Roger_Stone ns1:indictedFor ns1:ObstructionOfJustice,
ns1:WitnessTampering,
ns1:FalseStatements.
}
#The task specifically requested DELETE DATA & INSERT DATA, put below is
a more efficient solution
DELETE{ns1:Roger_Stone ns1:clearedOf ns1:AllCharges.}
INSERT{
ns1:Roger_Stone ns1:indictedFor ns1:ObstructionOfJustice,
ns1:WitnessTampering,
ns1:FalseStatements.
}
WHERE{ns1:Roger_Stone ns1:clearedOf ns1:AllCharges.}
Use a DESCRIBE query to show the updated information about Roger Stone
PREFIX ns1: <http://example.org#>
DESCRIBE ?o
WHERE {ns1:Roger_Stone ns1:indictedFor ?o .}
===Use a CONSTRUCT query to create a new RDF group with triples only about Roger Stone===
PREFIX ns1: <http://example.org#>
CONSTRUCT {
ns1:Roger_Stone ?p ?o.
?s ?p2 ns1:Roger_Stone.
}
WHERE {
ns1:Roger_Stone ?p ?o .
?s ?p2 ns1:Roger_Stone
}
===Write a DELETE/INSERT statement to change one of the prefixes in your graph===
PREFIX ns1: <http://example.org#>
PREFIX dbp: <https://dbpedia.org/page/>
DELETE {?s ns1:person ?o1}
INSERT {?s ns1:person ?o2}
WHERE{
?s ns1:person ?o1 .
BIND (IRI(replace(str(?o1), str(ns1:), str(dbp:))) AS ?o2)
}
#This update changes the object in triples with ns1:person as the
predicate. It changes it's prefix of ns1 (which is the
"shortcut/shorthand" for example.org) to the prefix dbp (dbpedia.org)
===Write an INSERT statement to add at least one significant date to the Mueller investigation, with literal type xsd:date. Write a DELETE/INSERT statement to change the date to a string, and a new DELETE/INSERT statement to change it back to xsd:date. ===
#Whilst this solution is not exactly what the task asks for, I feel like
this is more appropiate given the dataset. The following update
changes the objects that uses the cp_date as predicate from a URI, to a
literal with date as it's datatype
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
DELETE {?s ns1:cp_date ?o}
INSERT{?s ns1:cp_date ?o3}
WHERE{
?s ns1:cp_date ?o .
BIND (replace(str(?o), str(ns1:), "") AS ?o2)
BIND (STRDT(STR(?o2), xsd:date) AS ?o3)
}
#To test:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
SELECT ?s ?o
WHERE{
?s ns1:cp_date ?o.
FILTER(datatype(?o) = xsd:date)
}
#To change it to an integer, use the following code, and to change it
back to date, swap "xsd:integer" to "xsd:date"
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ns1: <http://example.org#>
DELETE {?s ns1:cp_date ?o}
INSERT{?s ns1:cp_date ?o2}
WHERE{
?s ns1:cp_date ?o .
BIND (STRDT(STR(?o), xsd:integer) AS ?o2)
}